Abstract
In this paper, the evaluation of random bit generators for security applications is discussed and the concept of stateless generator is introduced. It is shown how, for the proposed class of generators, the verification of a minimum entropy limit can be performed directly on the post-processed random numbers thus not requiring a good statistic quality for the noise source itself, provided that a sufficient compression is adopted in the post-processing unit. Assuming that the noise source is stateless, a straightforward entropy estimator to drive an adaptive compression algorithm is proposed. Examples of stateless sources are also discussed.
Finally, an attack scenario against a noise source is defined and an effective approach to the attack detection is presented. The entropy estimator and the attack detection together guarantee the unpredictability of the generated random numbers.
Chapter PDF
Similar content being viewed by others
References
Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (2001)
Schindler, W.: Efficient Online Tests for True Random Number Generators. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 103–117. Springer, Heidelberg (2001)
Killmann, W., Schindler, W.: AIS 31: Functionality classes and evaluation methodology for true (physical) random number generators. version 3.1, Bundesamt fur Sicherheit in der Informationstechnik (BSI), Bonn (2001)
Stojanovski, T., Kocarev, L.: Chaos-Based Random Number Generators - Part I: Analysis. IEEE Trans. Circuits and Systems I 48(3), 281–288 (2001)
Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-Based Random Number Generators - Part II: Practical Realization. IEEE Trans. Circuits and Systems I 48(3), 382–385 (2001)
Bagini, V., Bucci, M.: A Design of Reliable True Random Number Generator for Cryptographic Applications. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 204–218. Springer, Heidelberg (1999)
Trichina, E., Bucci, M., De Seta, D., Luzzi, R.: Supplementary Cryptographic Hardware for Smart Cards. IEEE Micro 21(6), 26–35 (2001)
Dichtl, M., Janssen, N.: A High Quality Physical Random Number Generator. In: Proc. Sophia Antipolis Forum Microelectronics (SAME 2000), pp. 48–53 (2000)
Jun, B., Kocher, P.: The Intel Random Number Generator. Cryptographic Research Inc., white paper prepared for Intel Corp. (April 1999), http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
Petrie, C.S., Connelly, J.A.: Modeling and Simulation of Oscillator-Based Random Number Generators. In: Proc. IEEE Int’l Symp. Circuits and Systems (ISCAS 1996), vol. 4, pp. 324–327 (1996)
Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications. IEEE Trans. Computers 52(4), 403–409 (2003)
Bock, H., Bucci, M., Luzzi, R.: An Offset-Compensated Oscillator-based Random Bit Source for Security Applications. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 268–281. Springer, Heidelberg (2004)
Mandal, S., Banerjee, S.: An Integrated CMOS Chaos Generator. In: Proc. 1st Indian National Conf. Nonlinear Systems & Dynamics (NCNSD 2003), pp. 313–316 (December 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bucci, M., Luzzi, R. (2005). Design of Testable Random Bit Generators. In: Rao, J.R., Sunar, B. (eds) Cryptographic Hardware and Embedded Systems – CHES 2005. CHES 2005. Lecture Notes in Computer Science, vol 3659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11545262_11
Download citation
DOI: https://doi.org/10.1007/11545262_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28474-1
Online ISBN: 978-3-540-31940-5
eBook Packages: Computer ScienceComputer Science (R0)