Hardware/Software Co-design for Hyperelliptic
Curve Cryptography (HECC) on the 8051 puP

Lejla Batina?, David Hwang!, Alireza Hodjat!,
Bart Preneel?, and Ingrid Verbauwhede!2

! University of California, El. Engineering Dept., Los Angeles, CA 90095
2 Katholieke Universiteit Leuven, ESAT/COSIC, Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium
{Lejla.Batina, Bart.Preneel, Ingrid.Verbauwhede}@esat.kuleuven.ac.be
{dhwang, ahodjat, ingrid}@ee.ucla.edu

Abstract. Implementing public-key cryptography on platforms with
limited resources, such as microprocessors, is a challenging task. Hard-
ware/software co-design is often the only answer to implement the com-
putationally intensive operations with limited memory and power at an
acceptable speed. This contribution describes such a solution for Hyper-
elliptic Curve Cryptography (HECC). The proposed hardware/software
co-design of the HECC system was implemented and co-simulated using
the GEZEL design environment [3]. As a low-cost platform, we chose an
8-bit 8051 microprocessor to which one small hardware co-processor was
added for field multiplication. We show that the Jacobian scalar multi-
plication can be computed in 2.488 sec at 12 MHz on this platform if a
minimal hardware module is added i.e. a hardware multiply-add unit.
This optimal solution provides a factor of 26 speed-up over a software-
only solution.

Keywords: HECC, GF(2™), genus 2 curves, hardware/software co-
design, embedded implementation.

1 Introduction

Public-key cryptosystems are present in almost all spheres of digital communi-
cation e.g. for financial, governmental and medical applications; they form an
essential building block for network security protocols (e.g. SSL/TLS, IPsec,
SSH). The best-known and most commonly used public-key cryptosystems are
based on factoring (RSA) and on the discrete logarithm problem in GF(p) (Diffie-
Hellman, ElGamal, Schnorr, DSA) [18]. They allow secure communications over
insecure channels without prior exchange of a secret key and they also enable
digital signatures. Elliptic Curve Cryptography (ECC), which was proposed in
the mid 1980s by Miller [20] and Koblitz [I4], is based on a different algebraic
structure. ECC offers shorter certificates, lower power consumption and better
performance on some platforms. Besides that, ECC offers more “security per
bit” as no sub-exponential algorithm is known that solves the discrete logarithm

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 106-[I18] 2005.
© International Association for Cryptologic Research 2005

Hardware/Software Co-design for HECC on the 8051 uP 107

problem in this group. However, only in the past few years has ECC started
replacing some of the RSA applications.

In 1988 Koblitz suggested to use the generalization of Elliptic Curves (EC)
for cryptography, the so-called Hyperelliptic Curves (HEC) [15]. While ECC
applications are highly developed in practice, the use of HEC is still of pure
academic interest. However, one advantage of HECC resides on the fact that
the operand size for HECC is at least a factor of two smaller than the one of
ECC. More precisely, while typical bit-lengths for ECC are at least 160 bits, for
HECC this lower bound is around 80 bits (in the case of genus 2 curves). This
fact makes HECC a very good choice for platforms with limited resources.

Almost all existing HECC implementations consider binary fields and curves
of genus two or three; this choice is motivated by security reasons [9]. Software
implementations were developed on general purpose processors and on embedded
microprocessors e.g. on an ARM [21126] and some research has been performed
on a hardware implementation. However, this article describes the first HECC
implementation using a hardware/software co-design. More precisely, we have
implemented the HECC divisor multiplication on the 8051 microprocessor, which
uses a small hardware co-processor to optimize the performance. This is the first
step towards exploring all possibilities for hardware/software co-designed HECC
implementations. Such an investigation is of special interest as embedded devices
are believed to be of vital importance for a broad area of pervasive computing
such as sensor networks and wireless applications.

First we examined the pure software i.e. C/assembly implementations. Next
some small extra hardware was added, which facilitates the field operations,
in particular the inversion and multiplication in the binary field. We conclude
that even with very limited hardware resources one can obtain an attractive
performance. We used formulae of Byramjee and Duquesne [8] to achieve opti-
mized divisor doubling operation. For the optimal hardware/software co-design
we used GEZEL as a design environment. GEZEL is especially suitable for the
exploration of domain-specific coprocessor and multiprocessor micro architec-
tures as it can provide cycle-true hardware/software co-simulation with various
embedded core instruction set simulators.

The remainder of this paper is organized as follows. Section 2 lists some rele-
vant previous work in HECC on embedded platforms. In Sect. 3 some background
information on HECC is given. Details of our implementation are specified in
Sect. 4 and results are listed in Sect. 5. Some directions for future work and
conclusions are given in Sect. 6.

2 Previous Work

Algorithms for HECC and implementations have been studied intensively in the
past years. A significant amount of work has been performed on investigating the
formulae for the group operation [I7124I228]. Explicit formulae for genus 2 curves
are given by Lange [I7] for arbitrary fields and for various types of coordinates.
There exist practical results for both software platforms (general purpose or

108 L. Batina et al.

embedded processor) [2621] and hardware devices, such as FPGAs [7I13]. The
most detailed and complete reference dealing with software as well as hardware
implementations is [24].

For embedded processors, a large amount of work has been performed for
the ARM platform [26123/4)21]. Pelzl et al. [2I] have implemented the group
operation of genus 2 and 3 for HECC on an ARMY processor. They compared
the results with ECC implementation (with corresponding security) and showed
that HECC performance is comparable to the one of ECC. The performance for
divisor scalar multiplication on the ARM microprocessor for genus 2 was further
optimized in [23] and compared to genuses 3 and 4. They proved that genus 3 is
the fastest, requiring less than 70 ms on an ARM7 running at 80 MHz. The work
of Wollinger et al. [26] considered not just the ARM7TDMI but also the ColdFire
and a PowerPC. In addition, they provided the first thorough comparison of ECC
and HECC on those platforms.

The first complete hardware implementation of HECC was given by Boston
et al. [7]. Wollinger et al. [25] investigated HECC implementation on a VLSI
coprocessor. They used projective coordinates and completed their research on
VLSI platforms started in [6/5]. They compared co-processors using affine and
projective coordinates and concluded that the latter should be preferred for
hardware implementations. They used a curve of a special form (y? + zy =
25+ fiz + fo), which allowed for more optimized formulae. In [13] three different
architectures on a FPGA have been examined for vast area of applications.

With respect to the platform, we mention here other relevant experiences
with curve-based cryptography. Woodbury et al. [27] showed that EC point
multiplication can be performed on an 8051 microcontroller in less than 2 sec
as a pure software solution. However, they used a 134-bit OEF at lower security
level. Gura et al. [10] compared ECC and RSA on 8-bit CPUs and proved that
Public-key Cryptography is viable on small devices.

For hardware/software co-design the only relevant work that we are aware
of is the one of Kumar and Paar [16]. They implemented ECC on an 8-bit AVR
microcontroller with some extra hardware for field multiplications. They show
that a 163-bit point multiplication can be calculated in 0.113 sec with a micro-
controller running at 4 MHz. We can compare this to our solution as both imple-
mentations are for similar platforms and the fields offer the same level of security.

3 Hyperelliptic Curve Cryptography (HECC)

We now present the mathematical background for hyperelliptic curves including
the algorithms for efficient arithmetic in the Jacobian group. More details on
the theory of hyperelliptic curves can be found in [19].

3.1 Hyperelliptic Curves

Let GF(2™) be an algebraic closure of the field GF(2™). Here we consider a hy-
perelliptic curve C of genus g = 2 over GF(2™), which is given with an equation
of the form:

Hardware/Software Co-design for HECC on the 8051 uP 109

C:y?+h(z)y = f(z) in GF(2™)[z,y), (1)

where h(z) € GF(2™)[z] is polynomial of degree at most g (deg(h) < g) and
f(x) is a monic polynomial of degree 2g + 1 (deg(f) = 2¢ + 1). Also, there
are no solutions (z,y) € GF(2™) x GF(2™) which simultaneously satisfy the
equation (1) and the equations: 2v + h(u) = 0, 2’ (u)v — f'(u) = 0. These points
are called singular points. For the genus 2, in the general case the following
equation is used y? + (how? + hix + ho)y = 2° + faxt + f22° + fox® + fiz + fo.
For our implementation we used the so-called type IT curves [§], which are defined
with hy = 0,h; # 1. In particular, the authors recommended to use curves of
the form: y2 +zy = z° + fax® + 22 + fo, since they combine a simpler arithmetic
with a good security level.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.
D =>"mpP and its degree is degD = > mp. Let Div denotes the group of all
divisors on C' and Divg the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C'is defined as quotient group J = Divy/P. Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),
for some element f of the function field of C' (div(f) = >_ pc ordp(f)P). The
discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, v is monic of degree 2,
degv < degu and u|f — hv —v? (so-called reduced divisors). For implementations
of HECC, we need to implement the multiplication of elements of the Jacobian
i.e. divisors with some scalar.

3.2 Algorithms for HECC

Divisor Multiplication. The divisor scalar multiplication is achieved by use
of divisor addition and doubling. We used the NAF algorithm to reduce the
number of additions.

Divisor Addition and Doubling. Let the quintuple [Uy, Uy, V1, Vg, Z] stand
for [22 + w1z + ug, v1z +vo] = [22 + Dz + 2, Yz + Y] This form allows us to
complete both point operations without inversion. Only one inversion and four
multiplication are required at the end to convert back from projective to affine
coordinates. We used the formulae from [§] for doubling and we used the same
approach to get formulae for addition in the case of mixed coordinates. The
addition for type II curve has the same complexity as the one of Lange [I7] i.e.
it takes 44M, but doubling has been further optimized to 31M (here M denotes
number of multiplications/squaring). The formulae for the addition are given in
Table [l The numbers in parenthesis correspond to the case of mixed addition.

Finite Field Arithmetic. We used the polynomial basis representation with
the irreducible polynomial being pentanomial in GF(28%). Each element of the
field can be represented as an 11-byte word. The field addition of two vectors in
hardware or software in GF(2™) is simply the xoring of the two vectors. The field

110 L. Batina et al.

Table 1. Formulae used for the divisor addition

Step |Calculations # mult.
1 |Precomputation and resultant r: 12M (6 M)

Z =2y Za, Un = 21 - Uz1,Uz0 = Z1 - Uso,

Va1 = Z1 - Va1, Voo = Z1 - Voo, N

t1 = U1 - Z2 + U2, t2 = Uio - Z2 + Uzo,

to=U -t1 +t2- Z1, 7 =to-t2 + 11 - Uro

2 |Compute almost inverse:

t1 = im)l,tg = im)o

3 |Compute almost s: 8M(7TM)

t4:V10'Z2+‘~/20, t5:V11'Z2+‘~/21,

w2 = to ‘154,11)3 = t1 ‘t5;

s1=(to+Z1-t1) - (ta+1ts5) + w2 +ws - (Z1 + Un1);

so = wz + Uip - w3

4 | Precomputations: 9IM

R=Z7 -r,so=s0-4,83 =814, I?B:R-sa

53:832,S:$0~81,§283~51,§:SQ~53,§:]§~§;

5 |Compute I: 3M

12:§~ﬁ21,1025-620,l1 = (S+5) - (Ua1 4 Ux)

+lo+1lo, lo=12+5;

6 |Compute U’: 17M

U()/:{Svo2+812't1'(t1+ﬁ21)+t2'§+R'[t1'T+S1'Z};

U1/:S‘t1+R2,12:lz+U1/,

ta=Uo 1o+ S5 -lo, t5:U1/'52+53'(U0/+l1);

Z’ZE'S3,U1/:R~U1/, U()/:E'U()/;

7 |Compute V’: 2M

Vo' =ta+ R - Vao;

Vi'!=ts+R- (‘721 + 2);
total 510 (440)

multiplication is the most costly operation in our system, since it is performed
thousands of times during the course of a single divisor multiplication. While
the inversion algorithm is actually more complex, it is only performed a single
time (for the case of projective coordinates) and hence it is not the bottleneck
in our initial implementation. We discuss our choices for field multiplication in
more detail in Sect. 4.

4 Implementation

4.1 8051 Microprocessor

Here we give a brief overview of the 8051 microprocessor platform. An 8051
is an 8-bit microcontroller originally designed by Intel that consists of several
components: a controller and instruction decoder, an ALU, 128 bytes of internal

Hardware/Software Co-design for HECC on the 8051 uP 111

memory (IRAM), up to 64K of external RAM (XRAM) addressed by a 16-
bit DPTR register, and up to 64KB of external program memory or 4KB of
internal program memory (ROM). The 8051 also has 128 bytes of special function
registers (SFRs), which are used to store system values such as timers, serial
port controls, input/output registers, etc. The architecture is shown in Figure[Il,
which is based on the Dalton 8051 core from UC Riverside [2].

8051 CORE
Decoder Controller Program
ROM
Internal
RAM/SFRs
1/0 ports
PO-P3
External
RAM I ICo—Processor

Fig. 1. The architecture of the 8051 microprocessor

An external RAM module (XRAM) can be attached to the 8051 core when
the 128 bytes of internal RAM are insufficient, which is often the case in public-
key cryptosystems. The 8051 interfaces to the outside world via a serial port as
well as four input/output register ports, labeled PO through P3.

It also should be noted that the 8051 in its original form relies on a clock
division principle. That is, the external clock entering into the device is actu-
ally divided by 12 to produce the system clock. Thus, a 12-MHz external clock
would produce an 8051 with a 1-MHz machine clock cycle, with most instruc-
tions requiring 1 or 2 machine cycles. Newer 8051 cores attempt to reduce the
clock division [I]. The clock division principle can serve as an advantage to co-
designed systems in that the coprocessor circuitry can inherently operate at 12x
the internal 8051 machine rate.

4.2 Various Implementation Options

The paper presents two types of HECC implementations on the 8051 processor.
The first type is a pure software implementation - either a pure C model operat-
ing on the 8051 or a mixed C/assembly model in which most of the functions are
performed in C while the GF(2%3) finite field multiplier is performed in assem-
bly. The second type is a mixed hardware/software model in which some of the
functions are performed in C while the GF(2%3) finite field operations (multipli-
cation/addition/inversion) are performed in hardware. The hardware operators

112 L. Batina et al.

and the 8051 are connected by a memory-mapped interface, over the 8051’s PO,
P1, and P2 I/O port interfaces.

Software C/ASM Implementation. The first implementation is a pure C
implementation, compiled onto the 8051 processor using the Keil suite. This
implementation uses a single function in C to combine the multiplication and
reduction functions. As a first improvement the multiplication routine is replaced
by an assembly code.

Multiplication: In the software implementation, we used a modified form of
Algorithm 4 of [I1] to implement fast software multiplication. The algorithm is a
fast comb-based multiplication method with windows implemented for a 32-bit
processor with window size of 4. Based upon initial simulation results, for an
8-bit processor, we found that a window size of 2 provides faster performance.

Reduction: To reduce the multiplication result by the irreducible polynomial,
a fast reduction technique was used. This technique was based on Algorithm 6
of [I1]. We have used a similar approach but modified the algorithm to implement
reduction using our GF(2%%) pentanomial and a word-size of 8 bits.

Inversion: The inversion function for this case is implemented as the Extended
Euclidean Algorithm.

Hardware/Software Implementation. The second type of HECC imple-
mentation is a hardware/software co-design i.e. software routines were enhanced
with binary field operations in hardware. In the first attempt we implemented
a data path which includes a hardware GF(283) multiplier. Figure B shows this
data path. The data IO ports from the 8051 processor are 8-bits long and the
multiplication is performed on the GF(2%3) operands. There is an instruction reg-
ister that controls the HW data path from the 8051 processor. The supported
instructions for the data path of Figure [2 are as shown in Table

Table 2. Instructions for the data path

Instruction |Definition

LOADA Load 8-bits of data from the 8051 to Register A of HW data path
LOADB Load 8-bits of data from the 8051 to Register B of HW data path
DOMULT Perform GF(2%) mult. on A and B and put the results in C

GETC Return 8-bits of data from Register C of HW data path to the 8051

Due to the fact that the data is transferred back and forth from the CPU
to the HW multiplier there is a lot of I/O overhead. In order to optimize the
total performance we tried to reduce the I/O transfers with minimum additional
memory storage added to the data path. The key observation is that in the
schedule of divisor’s double and add operations (see Table [[l) there are many
expressions of the following form: k1 = f3 - tg + ¢1.

Hardware/Software Co-design for HECC on the 8051 uP 113

Initially for such expression, f3 and ty were moved to the hardware multiplier,
the multiplication was performed in the hardware, then the result was returned
back to the CPU and the addition with ¢; was performed in the SW. In order to
speed up this expression the hardware multiplier was replaced with a GF(2%3)
“multiply-and-add” data path. For this purpose a hardware adder and a feedback
line that can keep the result of the multiplication in hardware was added to the
original data path and therefore, the number of I/O transfers decreased with
not much of extra hardware. For the new datapath (Figure [3)), the instructions
shown in Table [3] were added.

Table 3. The new instructions for the data path

Instruction|Definition
MOVE_CTOB [Move the data in Register C to Register B
DOADD Perform GF(2%%) addition on A and B and put the results in C

Moreover, in the software routines that implement the divisor’s double and
add operations, we moved the coprocessor’s instructions up and down in the
schedules of the divisor’s operations, so that we do not have to repeatedly load
the same values into the internal register A of the data path. The performance
gain of these optimizations will be provided in the next section.

In addition, for the best performance in the final HW/SW implementation
of HECC on the 8051 processor, the GF(2%3) inversion operation was performed
in HW. The same HW datapath is used to implement the inversion algorithm
which consists of repeated multiplications. The details of the hardware GF(253)
multiplication and inversion are given after introducing our design environment.

Design Environment: At this stage we briefly introduce the design environ-
ment GEZEL [3] in which we model the co-designed system. In our applica-
tion, we used the Dalton 8051 ISS to perform cycle-accurate simulations for our
software only (C and C/ASM) implementation. For the hardware/software sys-
tem, we designed our co-processor multiplier using GEZEL’s hardware descrip-
tion language. The language syntax is primarily used to describe the FSMD
(finite state machine plus datapath) system model. Thus, a datapath for the
co-processor was designed and its corresponding control logic was also designed
in the GEZEL language.

After the design of the hardware co-processor, we attached the co-processor
to the input/output ports of the 8051 ISS (P0-P3) using the GEZEL design en-
vironment, and then performed timing and functional verification. GEZEL gave
us the ability to co-simulate the 8051 with clock division circuitry as it interfaced
with a 12 MHz hardware module in a cycle-exact manner. Upon verification of
the functionality of the multiplier co-processor, the GEZEL code was automat-
ically converted to RTL VHDL and input into Synplicity for FPGA synthesis.

Multiplier: In the first version of the multiplier, the multiplier implements
a finite field multiplication and simultaneously a corresponding reduction in a

114 L. Batina et al.

84

8 Mult 84 8
84 dout

. 8
ins

Fig. 2. Data path for the initial design

din

Mult |84

dout
Add

Fig. 3. Data path of the new co-processor

bit-serial implementation. A bit-serial implementation was chosen for area com-
pactness as well as to take advantage of the 12x increase in effective clock rate
of the co-processor over the 8051 core. In the second version, the multiplier was
enhanced with the additional “multiply-and-add” instruction and datapath ele-
ment, as described previously.

Inversion: Inversion in binary fields can be replaced by a chain of multiplications
(and squarings). It is of interest if squarings are faster than multiplication such
as for normal bases. First by means of Fermat’s little theorem we have: a=! =
a?" 2 = (azm_lfl)z, for all « € GF(2™). The technique to compute this in
optimal way is the basis for the idea of Itoh and Tsujii [12]. Their method is
especially suited for normal basis but can be applied on polynomial basis as well.

Here we consider the case for m odd, so m — 1 is even. Then we can write:

m—1 m—1 m—1

1 m—1 m—1
a?" T =g T D@ T AN (g2 T -2 T 2T —1 T our case for GF(28%)

83 82 41 41 541 .
we get: a !t =a? "2 = (a®> 1% = ((a®> 71)? @®> 12, which means that we
27n71 2m—1_1

need to use formula for a —1 but now m — 1 is odd. In this case: a

aa?" " 72 = qa(a?")2,

By repeated use of these formulae we can compute the inverse by only 90M .
The total number of multiplications (or squarings) required to compute an in-
verse in GF(2™) is given with: |loga(m —1)| +w(m — 1) — 1. Here w(k) denotes
the Hamming weight of some positive integer k.

Hardware/Software Co-design for HECC on the 8051 uP 115

5 Results

Here we give detailed results on all three platforms and we discuss them further.
In Table @ the timings for all finite field operations are given for hardware and
software. Timings for all basic operations are shown and in the last row, the
“multiply-and-add” operation is also added. One can notice that inversion in
software takes a very long time because it is implemented using the Extended
Euclidean Algorithm. The software implementation of inversion by means of
Fermat would be already much faster, but we decided to move this operation in
hardware anyway. Namely, we concluded that although our software implemen-
tations could possibly be further optimized, it would still be difficult to achieve
an efficient HECC implementation.

Another observation is that the numbers for addition and multiplication in
hardware are the same. The reason for that is because the majority of the time for
multiplication and addition on hardware is spent on the 10 transfers. Therefore,
the time to perform single multiplication (83 cycles) or an addition (1 cycle) is
not more than even one 8-bit IO transfer from 8051 to the accelerator. Moreover,
this time (2.3 ms) is also very close to the time it takes to do ab+ ¢ (2.5 ms),
and this is for the same reason as well. However, the fact that this operation
is used repeatedly allowed for a speed-up in the new datapath. Sizes of XRAM
and ROM are given in bytes (B).

Table 4. Implementation results for operations in GF(2%%) for hardware and software
routines

Operation Perf. [f Cl. Cyc.]|Perf. [ms]j@12MHz|XRAM [B]|ROM [B]
Addition (SW) 38 K 3.2 54 608
Multiplication (SW) 650 K 54.1 122 2065
Inversion (SW) 4672 M 389 K 160 2383
Addition (HW) 282 K 2.3 53 934
Multiplication (HW) 282 K 2.3 53 934
Inversion (HW) 788.5 K 65.7 75 1835
ab+ ¢ (HW) 30.5 K 2.5 44 942

The results for the scalar multiplication of divisor for various implementation
options are given in Table Bl FPGA area is given in number of LUTs without
XRAM and ROM which are specified separately. As can be seen in Table Bl a
significant increase in performance is provided by moving the finite-field mul-
tiplication from C to assembly, as shown in the first two rows. An additional
improvement is made when the multiplication is moved into hardware; however
at this point the timing does not improve dramatically because at this point
the inversion algorithm (rather than the finite-field multiplication) is the critical
path element of the system. Moving the inversion into hardware rapidly reduces
the timing (from 52 to 4.1518 seconds). An additional 40% timing reduction oc-
curs after the point operation signal flow graphs are analyzed and manipulated,

116 L. Batina et al.

Table 5. Implementation results for divisor multiplication in GF(2%%) for all three
platforms

FPGA (XRAM| ROM | Pert.[s]
Implementation [LUTSs]|[Bytes]|[Bytes]|@12MHz
C (Inversion in SW) 3300 820 | 11754 | 191.7
C+ASM(Inversion in SW)| 3300 820 |12284| 64.9
C+HW multiplier 3600 820 | 11754 52
(Fig. BHnversion in SW)
C+HW multiplier 3600 927 | 12789 | 4.1518
(Fig. 2Hnversion in HW)
C+HW multiplier 3781 936 | 11524 | 2.4880
(Fig. BHnversion in HW)

and the new “multiply-and-add” operation is created and used. From this table
it can also be seen that the number of LUTs does not change whether inversion is
performed in hardware or software. This is due to the fact that even if inversion
is done in software, the same accelerator is used for field multiplication.

Now we compare our performance results with other work on embedded
processors. Table [shows that our result features a practical HECC implemen-
tation in constrained environments. First, it should be mentioned that it is ex-
tremely difficult to compare the performance of cryptographic primitives on dif-
ferent embedded processors, since each processor presents a unique architecture
and memory structure. The discussion below is primarily to reference prior art.

The first two references relate to the ARMY7, which is a 32-bit platform and
features completely different architecture than the 8051. Even so, the second
reference is of the same order as ours using frequency scaling for rough normal-
ization. The most suitable comparison to this work is [I6] and [10]. Gura et al.
achieve the shown performance using a “faster” 8051, i.e. an 8051 whose clock
division was much less than 12x. They also demonstrate the well-known fact
that the AVR is much faster than the 8051 (though exactly how much faster
is subject to debate). This provides perspective when comparing to the ECC
implementation of Kumar and Paar [16].

Table 6. Implementation results for divisor multiplication on various embedded plat-

forms
Reference| PKC | Field |Platform|Frequency [MHz||Performance [ms]
23] HECC| GF(2%%) | ARM7 80 71.56
[HECC| GF(2%°) | ARM7 80 374
[16] ECC |GF(2'%)| AVR 4 113
[10] ECC |GF(2'%%)| 8051 12 4580
this work [HECC| GF(2%%)| 8051 12 2488

6

Hardware/Software Co-design for HECC on the 8051 uP 117

Conclusions and Future Work

This paper shows that even on a small 8-bit processor one can implement hy-
perelliptic curve cryptography efficiently. We have designed a small hardware
module that results in a significant speed-up compared with a software-only so-
lution. We believe that hardware/software co-design offers a new alternative for
low-power and low-footprint devices. We plan to explore other trade-offs between
hardware and software in order to find the best partition. Additional options can
be made available by exploiting parallelism between HECC operations.

References

10.

11.

12.

. Dallas semiconductor ds89c420 ultra-high-speed microcontroller. http://wuw.

maxim-ic.com/quick_view2.cfm/qv_pk/2963.

. Dalton 8051 processor. http://www.cs.ucr.edu/~dalton/8051/\
. GEZEL design environment. http://www.ee.ucla.edu/~schaum/gezel.
. S. Baktir, J. Pelzl, T. Wollinger, B. Sunar, and C. Paar. Optimal tower fields for

hyperelliptic curve cryptosystems. In Proceedings of 38th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, USA, November 7-10 2004.

. G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Finding optimum parallel

coprocessor design for genus 2 hyperelliptic curve cryptosystems. In Proceedings
of ITCC, April 5-7, 2004, Las Vegas, Nevada, USA, 2004.

. G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Hyperelliptic Curve Cryp-

tosystem: What is the Best Parallel Hardware Architecture?, chapter in Embedded
Cryptographic Hardware: Design and Security. Nova Science, 2004.

. N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus two hyperelliptic curve

coprocessor. In B. S. Kaliski Jr., C. K. Kog, and C. Paar, editors, Proceedings
of 4th International Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), number 2523 in Lecture Notes in Computer Science, pages 400—414.
Springer-Verlag, 2002.

. B. Byramjee and S. Duquesne. Classification of genus 2 curves over Fh» and

optimization of their arithmetic. Cryptology ePrint Archive: Report 2004/107.

. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic

curves. In B. Preneel, editor, Advances in Cryptology: Proceedings of EUROCRYPT
2000, volume 1807 of LNCS, pages 19-34, 2000.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs. In M. Joye and J. J. Quisquater,
editors, Proceedings of 6th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), Lecture Notes in Computer Science 3156, pages 119—
132, 2004.

D. Hankerson, J. L. Hernandez, and A. Menezes. Software implementation of el-
liptic curve cryptography over binary fields. In C. K. Ko¢ and C. Paar, editors,
Proceedings of 2nd International Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES), number 1965 in Lecture Notes in Computer Science, pages
1-24. Springer-Verlag, 2000.

T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF(2™). Electronics Letters, 24(6):334-335, 1988.

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2963
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2963
http://www.cs.ucr.edu/~dalton/8051/
http://www.ee.ucla.edu/~schaum/gezel

118

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L. Batina et al.

H. Kim, T. Wollinger, Y. Choi, K. Chung, and C. Paar. Hyperelliptic curve co-
processors on a FPGA. In Workshop on Information Security Applications - WISA,
Jeju Island, Korea, August 23-25 2004.

N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203-209, 1987.

N. Koblitz. A family of Jacobians suitable for Discrete Log Cryptosystems. In
S. Goldwasser, editor, Advances in Cryptology: Proceedings of CRYPT(O’88, num-
ber 403 in Lecture Notes in Computer Science, pages 94-99. Springer-Verlag, 1988.
S. Kumar and C. Paar. Reconfigurable instruction set extension for enabling
ECC on an 8-bit processor. In Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL) 2004, Antwerp, Belgium, August 30-
September 1, 2004.

T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication and Computing, 15(5):295-328, February
2005.

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

A. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary introduction to hyperel-
liptic curves, chapter Appendix, pages 155-178. Springer-Verlag, 1998. N. Koblitz:
Algebraic Aspects of Cryptography.

V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,
Advances in Cryptology: Proceedings of CRYPT(0’85, number 218 in Lecture Notes
in Computer Science, pages 417-426. Springer-Verlag, 1985.

J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosys-
tems: Closing the performance gap to elliptic curves. In C. Walter, C. K. Kog, and
C. Paar, editors, Proceedings of 5th International Workshop on Cryptograpic Hard-
ware and Embedded Systems (CHES), number 2779 in Lecture Notes in Computer
Science, pages 351-365. Springer-Verlag, 2003.

J. Pelzl, T. Wollinger, and C. Paar. High performance arithmetic for hyperelliptic
curve cryptosystems of genus two. In Proceedings of ITCC, April 5-7, 2004, Las
Vegas, Nevada, USA, 2004.

J. Pelzl, T. Wollinger, and C. Paar. Special Hyperelliptic Curve Cryptosystems of
Genus Two: Efficient Arithmetic and Fast Implementation, chapter in Embedded
Cryptographic Hardware: Design and Security. Nova Science Publishers, 2004.

T. Wollinger. Software and Hardware Implementation of Hyperelliptic Curve Cryp-
tosystems. PhD thesis, Ruhr-University Bochum, Germany, 2004.

T. Wollinger, G. Bertoni, L. Breveglieri, and Christof Paar. Performance of HECC
coprocessors using inversionfree formulae. International Workshop on Information
Security & Hiding, Singapore (ISH ’05).

T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, G. Saldamli, and ¢. Kog. El-
liptic and hyperelliptic curves on embedded uP. ACM Transactions on Embedded
Computing Systems, 3(3):509-533, 2004.

A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart-
cards without coprocessors. In Proceedings of Fourth Smart Card Research and
Advanced Applications (CARDIS 2000) Conference, 2000.

	Introduction
	Previous Work
	Hyperelliptic Curve Cryptography (HECC)
	Hyperelliptic Curves
	Algorithms for HECC

	Implementation
	8051 Microprocessor
	Various Implementation Options

	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

