Abstract
A biclustering algorithm, based on a greedy technique and enriched with a local search strategy to escape poor local minima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a gain function, combining the mean squared residue, the row variance, and the size of the bicluster. Different strategies to escape local minima are introduced and compared. Experimental results on yeast and lymphoma microarray data sets show that the method is able to find significant biclusters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103 (2000)
Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of the the Fourth SIAM International Conference on Data Mining (SDM 2004) (2004)
Eisen, M.B., Spellman, P., Brown, P.O., Botstein, P.: Cluster analysis and display of genome-wide expression pattern. In: Proceedings of the National Academy of Sciences, USA 8, pp. 14863–14868 (1998)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Getz, G., Levine, E., Domany, E.: Coupled two-way cluster analysis of gene microarray data. In: Proceedings of the National Academy of Sciences, USA, pp. 12079–12084 (2000)
Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)
Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford University (2000)
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)
Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th Nation Conference on Artificial Intelligence (AAAI 1994), pp. 337–343 (1994)
Tavazoie, S., Hughes, J.D., Campbell, M., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Natural genetics 22, 281–285 (1999)
Yang, J., Wang, W., Wang, H., Yu, P.: Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering (BIBE 2003), pp. 321–327 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Angiulli, F., Pizzuti, C. (2005). Gene Expression Biclustering Using Random Walk Strategies. In: Tjoa, A.M., Trujillo, J. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2005. Lecture Notes in Computer Science, vol 3589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546849_50
Download citation
DOI: https://doi.org/10.1007/11546849_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28558-8
Online ISBN: 978-3-540-31732-6
eBook Packages: Computer ScienceComputer Science (R0)