Skip to main content

Towards Mining Structural Workflow Patterns

  • Conference paper
Database and Expert Systems Applications (DEXA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3588))

Included in the following conference series:

Abstract

Collaborative information systems are becoming more and more complex, involving numerous interacting business objects within considerable processes. Analysing the interaction structure of those complex systems will enable them to be well understood and controlled. The work described in this paper is a contribution to these problems for workflow based process applications. In fact, we discover workflow patterns from traces of workflow events based on a workflow mining technique. Workflow mining proposes techniques to acquire a workflow model from a workflow log. Mining of workflow patterns is done by a statistical analysis of log-based event. Our approach is characterised by a “local” workflow patterns discovery that allows to cover partial results and a dynamic technique dealing with concurrency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)

    Article  Google Scholar 

  2. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

    Article  Google Scholar 

  3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–498. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM) 7(3), 215–249 (1998)

    Article  Google Scholar 

  5. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: Proceedings of the 6th ACM SIGSOFT international symposium on Foundations of software engineering, pp. 35–45. ACM Press, New York (1998)

    Chapter  Google Scholar 

  6. Herbst, J.: A machine learning approach to workflow management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management to support acquisition and adaptation of workflow models. In: DEXA 1998: Proceedings of the 9th International Workshop on Database and Expert Systems Applications, p. 745. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  8. Sayal, M., Casati, F., Shan, M.C., Dayal, U.: Business process cockpit. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 880–883. Springer, Heidelberg (2003)

    Google Scholar 

  9. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)

    Article  Google Scholar 

  10. Baïna, K., Berrada, I., Kjiri, L.: A Balanced Scoreboard Experiment for Business Process Performance Monitoring: Case study. In: 1st International E-Business Conference (IEBC 2005), Tunis, Tunisia, June 24-25 (2005)

    Google Scholar 

  11. Gaaloul, W., Alaoui, S., Baïna, K., Godart, C.: Mining Workflow Patterns through Event-data Analysis. In: The IEEE/IPSJ International Symposium on Applications and the Internet (SAINT 2005). Workshop 6 Teamware: supporting scalable virtual teams in multi-organizational settings. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  12. van der Aalst, W.M.P., van Dongen, B.F.: Discovering workflow performance models from timed logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Weijters, A.J.M.M., van der Aalst, W.M.P.: Workflow mining: Discovering workflow models from event-based data. In: Dousson, C., Höppner, F., Quiniou, R. (eds.) Proceedings of the ECAI Workshop on Knowledge Discovery and Spatial Data, pp. 78–84 (2002)

    Google Scholar 

  14. Herbst, J., Karagiannis, D.: Workflow mining with inwolve. Comput. Ind. 53(3), 245–264 (2004)

    Article  Google Scholar 

  15. Schimm, G.: Process Miner - A Tool for Mining Process Schemes from Event-Based Data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Gaaloul, W., Bhiri, S., Godart, C.: Discovering workflow transactional behaviour event-based log. In: 12th International Conference on Cooperative Information Systems (CoopIS 2004), Larnaca, Cyprus, October 25-29. LNCS. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaaloul, W., Baïna, K., Godart, C. (2005). Towards Mining Structural Workflow Patterns. In: Andersen, K.V., Debenham, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2005. Lecture Notes in Computer Science, vol 3588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546924_3

Download citation

  • DOI: https://doi.org/10.1007/11546924_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28566-3

  • Online ISBN: 978-3-540-31729-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics