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Abstract. We consider open terms and parametric rules in the context of the
systematic derivation of labelled transitions from reduction systems.

1 Introduction

Since the seminal ideas of logicians of the early 20th century, it has become custom-
ary to encapsulate the dynamics of computation in terse and elegyarite calculi.
For instance, the essence of conventional computation is condensed in Church’s beta-
reduction rule {x.M)N — M{x := N}, while the mechanics of-calculus interaction is
captured by the rule

any.Pla(x).Q — P | Q{x:=n}.

The beauty and power of such formalisms can hardly be overestimated: they centre our
models on the essential, and help us focus our reasoning on fundamental principles.
However, models are normally used not only to describe, but also to design, specify,
analyse, and — most importantly — as the foundations for advanced, ground-breaking
techniques. A well consolidated, relevant example is ‘model checking, where simple
tools used at a suitable abstraction level and driven by powerful ideas faveeal
spectacular results. Similarly, notions revolving around semantic equivalences and coin-
duction have had a strong, lasting impact.

Several such ideas rely on relatively lower-level models bas#icosition systems
Intuitively, these describe individual steps of computing entities, rather than providing
an overall picture of the computational primitives of the model as such. For instance, in
the case ofr-calculus terms a transiticany.P <“» P would express that the system
is ready to evolve t® by engaging in actiom and dfering it to (potential partners in)
the environment. There would then be a dual a(i§.Q a0, Q{x := n} for message
receivers, and finally an inference rule would dictate how dual actions can meet in the
environment and complete each other to yield finished interactions.

A N BAY, g
A|B—» A |B

Although the resulting term-transformation systems are equivalent, fiileeetices
between these approaches are significant, and are better not dismissed hastily by a sim-
ple ‘matter-of-taste’ argument. The fundamental point of a ‘labelled-transition’ seman-
tics is that it is compositional: it explains the behaviour of complex systems by ex-
trapolating it from the behaviour of their components. This is in sharp contrast with a
‘reduction’ semantics, wher@n).P anda(x).Q are completely inert, have no meaning
of their own. This distinction is of paramount importance for applications like model

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp.30-50, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Labels from Reductions: Towards a General Theory 31

checking and bisimulation, that rely on the informatidfoeded by labels and transi-
tions to analyse system components in isolation.

Influenced by Plotkin’s successful ‘structural operational semantics’ [10], many for-
malisms in the seventies and eighties had been originally equipped exclusively with a
labelled-transition semantics, including CCS andsthmalculus. In recent years how-
ever it has become increasingly important for complex computational models to have
both a reduction semantics, to explain their mechanics in intuitive, self-justifying terms,
and a labelled-transition semantics, to serve as basis for semantic analysis. In particu-
lar, several papers have been devoted to identify characterisations of reduction-based
equivalences in terms of labels and bisimulations. This is the context of the present
work: is it possible, and how, tderive labelled transition systems from reducticas
as to equip calculi with rich and treatable semantics theories? And to what extent can
this be done parametrically, i.e., independently on the specific calculus at hand? Ques-
tions like these gained momentum as work on ‘universal’ models emerged from the
field of concurrency, as e.g. action calculi [7], tile systems [2], and, more recently, bi-
graphs [3, 8]. Such models are meant to provide general frameworks independent of
specific models, such that several calculi can be recast and understood as fragments
therein. In ambitious terms, one could think of these frameworks as semantic universes
which individual models can be instantiated from. The question therefore arose as to
how to associate meaning and reasoning techniques to such ‘universal’ meta-models.

Much progress has been made since, mainly by Robin Milner and his collaborators.
The rest of this introduction will revisit the main ideas underlying the approach, whilst
the main body of paper will present the technical details in a slightly novel fashion, and
try to accommodate in the theory the idea of parametric rules and open terms.

The central technical challenge is thus how to associate labelled transitions to terms
from reduction systems. Peter Sewell [16] exploited the intuition that labels in labelled
transition systems express the compositional properties of terms, i.e., the extend to
which a term is amenable to engage in interactions with the environment, and how.
Thus, if terma when inserted in aontext -] can perform a reduction, saya] — &/,
thenc[—] is a strong candidate as a label for a transitiof+ a’. (This spells out as:

‘ais ready to interact with contex{—], anda would be the result of such potential
interaction.’) This intuition is very suggestive indeed; the devil however is as usual the
details: in order for this idea to give a sensible bisimulation, it is fundamental to select
carefully which contexts to consider: certainly not all, but only thosehich are the
‘smallestto trigger a given reduction. Failing to do so would give rise to a ‘garbled’
semantics, as the excess transitions would convey misleading information as to what
termais ready to engage with and what the environment is expected to contribute.

The need to formalise the notion of ‘smallest’ leads#tegory theorywhere it is
possible to express such universal properties in term of uniqueness of certain ‘arrow’
factorisation. For instance, in categorical terms the fact @hat the disjoint union
(the so-called coproduct) of setsandB is expressed by saying that all pairs of maps
(arrows)f : A —» X andg : B — X factor uniquely via injections int€ and a map
[f,g] : C — X.Incomplete analogy, a contesft-] is the ‘smallest’ to create redéxn
a, if all contextsc’[-] that creatd factor asc’[-] = €[c[-]] for a unique contexg[-].
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For instance, in tha-calculus

xx -y y, butnot  Axx-2Zs yz
as ()yzarises uniquely as the composition e and ¢)y.

The first step to rephrase our notion of ‘smallness’ as a problem of unique arrow
factorisation is to recast terms as arrows in categories. This can be done following Law-
vere’s seminal approach to algebraic theories, that here we instantiate using MacLane’s
notion of ‘product and permutation’ category (PROP) — roughly speaking, ‘linear’ Law-
vere theories —that we recall §2. An arrowf : n —» min a PROP representwatuple
of contexts containing altogetharholes;’ i.e., whenf is fed withn terms to plug its
holes, it yields a tuple aofnterms. The question as to whether or not terin context
¢ manifests a redekbecomes now whether there exists a suitable comtexich that
ca = dl. This allows us to express the minimality by ranging over all equations of
the kindc’a = d’l, seeking for unique ways to factorthroughc. In §3 we recall how
such universal property is elegantly expressed by the notidteaf-relative-pushout
a breakthrough due Leifer and Milner [4]. Remarkably, such formalisation supports the
central tongruence theorenthat bisimulation on the labelled transition systems de-
rived following the theory is a congruence, i.e., it is closed under all contexts. Due to
the generality of the framework, such a result has already been applied to a variety of
different models [1, 3,9, 12-14]

This paper’s original contribution concerns our initial ideas on the treatmeutasf
termsandparametric rulesn the above framework.

For the sake of illustration, let us consider on the CCS rule for interaction. To ex-
press such a rule as a collection of ground r@es| aQ — P | Q is not entirely
satisfactory in this setting: even in the simplest cases, we have infinitely many rewrite
rules to deal with, and these give rise to infinitely many higher-order labels, e.g., of
the kindaP —2%» P | Q. This appears to make a poor use of the generality, elegance
and succinctness of theory of relative pushouts. Ideally, the rule should be expressed
parametrically, as th

alja2—1|2

and the labels should be derivable for open terms with universal property imposed both
on the contexts and the parameters. A label should thus consist both of a smallest con-
text and the most general parameter which makes a reduction possible; for example

@P1 X2 P11  and aP|lo»P|L

where the label above the transition denotes a context with two holes (to insert the left-
hand pair in), and the label below a transition denotes a parameter (to fill the left-hand
side open term with).

As it turns out, the framework is robust enough to adapt easily to the new question.
Rather than investigating (‘square’) equations suateas dl, we now facehexagonal
equationgap = dlg in order to establish the universal property that, at the same time,

1 In the paper we use natural numbers to denote context parameters (‘holes’).
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identifies the smallest contegtas well as the largest parametethat unearth redek

in terma. The main technical device we introduce to that purpose is to pair the notion
of slice pushout (a rephrasing of relative pushouts) with a dual notion of coslice pull-
back: the role of the pushout is to determinas before, while the pullback of course
ascertaing. Such coupling of universal properties gives rise to the new notioluxf *
(locally universal hexagon), introduced §4. These have been considered previously
by Peter Sewell, who referred to them as hex-RPOs. In fact, much of our technical
development has been foreshadowed in his unpublished notes [15].

Our main technical results are a characterisation of categories with luxes in terms of
slice pushouts and coslice pullbacks (Theorem 1) and, of course, the fundacwental
gruence theorenfor the labelled transition systems derived using our theory of luxes
(Theorem 3). Most of the ideas presented here are work in progress, and in the conclud-
ing section we discuss merits and shortcomings of our proposal, as well as identifying
some of the main avenues of future work on luxes.

Structure of the paperln §2 we recall the notion of PROP and the construction of
categories of termg3 illustrates the existing theory based on slice pushouts, and its
extension to a bicategorical settirfgl-6 contain the main body of the paper, with our
definition of luxes, their properties, and the congruence theorem. Fif@ljiscusses
the shortcomings of the current theory and points forward to open issues and future
research.

We assume the reader to have a basic knowledge of category theory, as can be
acquired from any graduate textbook. Throughout the paper we use standard categorical
notations, where denotes (right-to-left) composition and is most often omitted.

2 PROPs as categories of terms

A ‘product and permutation’ category [5], PROP, can be described, roughly, as a linear
Lawvere theory; more accurately, PROPs are one-sorted symmetric monoidal theories
whereas Lawvere theories are one-sorted finite product theories. We recall a straight-
forward definition below.

Definition 1 (PROP).A PROP is a categor¢ where:

— objects are the natural numbers (here denotédd). . .);

— for eachn, the group of permutations afelementsS(n), is a subgroup of all the
invertible elements of the homsaet, p]. The identity permutation corresponds to
the identity 3, : n — n;

— there is a functow : C x C — C which acts as addition on the objects, i.e.,
me® n = m+ n, and additionally:

e isassociative:{®@ )@ f” = f @ (f' ® f");

e giveno € S(n) ando’ € S(n'), we haver ® 0’ = o x o’ :n+n - n+n,
wherex denotes the product of permutations;

o for any two natural numbers ', lety,» : N+ n" — n+n’ be the permutation
which swaps the two blocks ef andn’. Then for any maps : m — nand
f7:m — n’” we havey,n (f @ ) = (' ® f)ymm.




34 B. Klin, V. Sassone, P. Sobdeiki

Example 1.For any algebraic signature (i.e., set of operator names with finite adties)
thefree PROFP;s overX hasn-tuples of terms ovek that altogether contaim distinct

holes, as arrows: m — n. Permutations inrj, n] are tuples built solely of holes) acts

on arrows as tuple juxtaposition, and arrow composition is the standard composition of
terms.

Example 2.PROPs can also be induced from signatures modulo term equations. Con-
sider the signatur® = {nil : 0, a. : 1, a : 1, | : 2} corresponding to the grammar:

P:=nil |aP | aP | P|P,
wherea ranges over some fixed s&f actions, and the associativity equation:

PIQIR=(PIQIR.

The PRORPAP (Prefix and Associative Parallel composition) is built of terms aver
quotiented by the associativity equation, with permutatigrend composition defined
as in Example 1. Additionally, one can quotient terms by the commutativity equation

PIQ=QIP;

the resulting PROP will be calleddACP (Prefix and Associative, Commutative Parallel
Composition).

3 Labelled transitions for ground reductions

This section introduces the background material we need in later sections. First, we
briefly recall Leifer and Milner’'s notion of idem-relative-pushout (IPO) as well as its
dual, the idem-relative-pullback (IPB). Following a brief informal and discussion on
how IPOs have been used in order to generate labelled transition systems (LTS) for
calculi with ground reduction rules, we shall demonstrate that IPOs and IPBs can be
conveniently studied in a category of factorisations, where they are easily seen to be co-
products and products, respectively. We conclude with a short note on how to generalise
the theory to G-categories [11, 13]

3.1 Pushouts in slices

Let C be a category and, W objects ofC. Theslice categoryC/W has as objects pairs
(X,a), wherea : X — W is an arrow ofC, while its arrowsf: (X,a) — (X’,a’) are
arrowsf: X —» X’ in C such that' f = a. The dual notion of @oslice category XC
consists of the pairgh, X), whereb : V — X and of mapsf: (b, X) — (b’, X’) for
f: X > X’ such thatftb = b/.

Letr: V — W be an arrow ofC. A pushoutof f: (V,r) — (C,c) andg: V,r) —
(D, d) in the slice categorZ /W is, equivalently, @oproductin (V, r) /(C/W). Spelling
this definition out, the span df andg identifies a commutative squaté = r = dgin
C, while the pushout diagram: (C,c) — (E,e) andk: (D,d) — (E, €) determines a
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universal set of arrows such thaf = kg, eh= c andek = d, as in the diagram below.
We shall say that a category hslce pushoutsvhen it has pushouts in all slicés.

W
I,
™~

f 9
V
Lemma 1. Free PROPs have slice pushouts.
Proof (sketch)A diagram
(ko) «* (mt) = (1.d)
in Px/nis an arromt : m — nin Px with its two decompositions:
ca=t=db

As usual, gositionp in a given ternt is a finite sequence of numbers which encodes a
path downward from a root node tbfThe set of positions iy with the standard prefix
ordering, is denote8;.

It is straightforward to check that decompositions of a given atrowo p arrows
are in 1-1 correspondence to monotonic functions fisno the set{1,..., p} with

the natural ordering. Consider such functiohg and Ay, corresponding to the two
decompositions above, and define

1 if Aca(p) = 1 andAgn(p) = 1
Ax(p) = § 2if Aca(p) = 1 andAgn(p) = 2
3if Acalp) = 2

1if Aca(p) = 1 andAap(p) = 1

Az(p) = § 2 if Aca(p) = 2 andAgn(p) = 1
3 if Agp(p) =2

A; andA; are monotonic, hence they correspond to two decompositions of
X1z =t = Xo¥22p

Moreover,x; = X, z7 = aandz, = b. Let the domain ok = x; = X beq. The square

(%)

Y7 y\Yl
o) (k9
N

(m.t)

2 Leifer and Milner [4] use the term relative pushouts, or RPOs, to refer to pushouts in slices.
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is a pushout ifPs/n.
Lemma 2. PAP has slice pushouts.

Proof (sketch)Arrows in PAP can be represented as tuples of finite, ordered trees
with nodes of any degree, where an immediate child of a node of degree higher than 1
must have degree at most 1. Additionally, nodes of degree 1 are labelled with elements
of A. Leaves of such trees correspond to occurrences of the comsthnhodes of
degree 1 to applications of prefix composition operators, and nodes of higher degree
to term fragments built solely of the associative parallel composition operator. On this
representation of arrows, a pushout construction very similar to that of Lemma 1 can be
made.

Interestingly,PACP does not have slice pushouts. Indeed, there is no unique medi-
ation between the squares in the slice of 1

(Lnil|1) (2112

V w (l,nil>/\ "\(nﬂ,b

(Lnil|1)  (1,nil|1) (Lnilll)  (1,nil|1)

nil\ /n‘il nil\ /n\il

<Q,nil | nil) <Q,nil | nil>

By an idem-relative-pushout [4] we mean the (square) diagra@ abtained by
applying the forgetful functody, : C/W — C (which projectsV, r) to V) to a pushout
diagram inC/W. Let I denote the class of IPOs @

In categories with slice pushouts, it makes sense to talk about IPOs without worry-
ing about particular slices, as the conclusion of the following lemma implies:

Lemma 3. If C has slice pushouts and a diagram D @yX maps via the forgetful
functor Uy to an IPO (i.e., D € 7) then D is a pushout diagram i@/ X.

Moreover, in categories with slice pushouts, IPOs behave somewhat like ordinary
pushouts, as demonstrated by the following lemma.

Lemma 4. Suppose tha has slice pushouts and the left square is an IPO. Then the
entire diagram is an IPOff the right square is an IPO.

A—B——C

Ll

D—E——F

3.2 Pullbacks in coslices

Dually, a pullback off : (a, A) — (r, W) andg: (b, By — (r, W) in the coslice category
V/C is, equivalently, a product in\fC)/(r, W). We say that a category hasslice
pullbackswhen it has pullbacks in all of its coslices.
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de
SN
A B
;\o/'

Fig. 1. An IPO corresponding to a label.

Lemma 5. Free PROPs have coslice pullbacl\P has coslice pullbacks.
Proof. Proceed exactly as in Lemmas 1 and 2.

By an idem-relative-pullback (IPB), we mean the (square) diagram obtained from
a pullback diagram in a coslice category under the image of the forgetful funa@r to
We immediately obtain dual versions of Lemmas 3 and 4, the latter of which we state
below.

Lemma 6. Suppose that has coslice pullbacks and the right square is an IPB. Then
the entire diagram is an IPBfjithe left square is an IPB.

A—B——C

Il

D—E—F

3.3 Labels

As we mentioned in the Introduction, IPOs have been used by Leifer and Milner to de-
rive labelled transition systems for calculi equipped with a reduction semantics derived
from a set of ground rules. Here we give a brief overview of the technique.

Leifer and Milner’s framework of choice is their notion aéactive systethwhich
consists of a category of contexts with a chosen object 0, a subcategory of evaluation
contexts which satisfies certain additional axioms and a set of reductiorRulée ar-
rows with domain O are thought of as closed terms. We shall not give a formal definition
here; instead we refer the reader ahead to Definition 3, which deals with a more general
situation where reduction rules may be open —to obtain a (closed) reactive system from
that definition one needs to assume additionally that the domalrenaf in every rule
{d,ryeRare0.

Sewell’'s central idea [16] which guides the definition of the derived LTS is that la-

bels should be certain contexts — more accuraﬂei—ﬁ,—» a whenfa (ain the context

of f) can perform a single reduction and resultinMoreover, as explained in the In-
troduction,f must be the ‘smallest’ such context. The notion of IPO gives us a precise
way to measure when a context is the smallest. Indeed, consider Fig. 1, avisesia
arbitrary term| is the left hand side of a reduction ruler) € R andd is an evalu-
tation context. The fact that the diagram is commutative implies thatan perform

a reduction resulting imr, where the redek has been replaced by the right-hand

side of the rule. Requiring the diagram to be an IPO results in an elegant formalisation
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of the fact thatf does not contain redundant material, not necessary for the reduction.
The LTS determined in this way can be shown to be well-behaved. In particular, if the
underlying category has slice pushouts then bisimilarity é®@gruencein the sense
thata ~ b implies thatca ~ cbfor alcin C.

3.4 Category of factorisations

The category of factorisations of an arrow provides a convenient setting for studying
slice pushouts and coslice pullbacks which we shall use in the rest of the paper.

Definition 2 (Factorisations). The category Faodf,r) of factorisations of an arrow
r: V- Win Cis consists of objects and arrows as defined below.

— objects: commutative diagrams@of the form

— arrows: an arrow fromdP, p, p’) to (Q, g, q’) is a commutative diagram i@ of the

form
W
TN
|

P h— Q
S A
V
— Composition and identities are obvious.
The following fact is immediate.
Proposition 1. (V/C)/ (r, W) = FactC,r) = (V,r) /(C/W).

Such categories of factorisations form a convenient universe to speak about slice
pushouts fromV, r) and coslice pullbacks frorr, W) in C, since the former are pre-
cisely the coproducts and the latter are the products in €agt(

3.5 Generalisation to G-categories

In [11, 13] the second and third author generalised Leifer and Milner’s theory to a 2-
categorical setting, where structural congruence axioms (usually involving the commu-
tativity of parallel composition) are replaced by invertible 2-cells. The extra structure

is hecessary, because simply quotienting terms results in structures where IPOs do not
exist, as in the case GfACP defined in Example 2 (cf. also [11]).
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The problem is alleviated by working with G-categories — 2-categories with in-
vertible 2-cells — and considering GIPOs. The latter are the natural bicategorical gen-
eralisation of IPOs: namely, rather than pushouts in slice categories, one considers bi-
pushouts in pseudo-slice categories. One can, equivalently, define a category of pseudo-
factorisations and consider bicoproducts (obtaining GIPOs) and biproducts (obtaining
GIPBS).

Example 3.A G-PROPis a PROP with the underlying category carrying the structure
of a G-category, i.e., a 2-category with all 2-cells invertible. As an example, consider the
PROPPAP from Example 2 (see the proof of Lemma 2 for an explicit representation of
the arrows oPAP). Additionally, a 2-cell from a termito a termt’ is a family, indexed

by the nodes of, of permutations on the sets of their immediate children, such that
the application of all these permutationsttgieldst’. Note how such 2-cells induce
bijections between the se® and S| of positions respectively ihandt’. Clearly, all

such 2-cells are invertible, hence the theory of GIPOs described in [11, 13] applies. In
particular, the lack of slice pushouts in the PRERCP is avoided here: pseudo-slice
bipushouts exist in the above G-PROP, which in the following will be denefCP.

4 Hexagons and universality

In this section we set out on a path to extend the technique of LTS derivation to systems
where reduction rules are open in the sense that they can be instantiated with arbitrary
parameters. In such a setting, we would also like generate labels for possibly open
terms. The basic idea is that instead of considering simply the smallest context which
allows a reduction, we would like to calculate both a smallest context and the most
general parameter at the same time. We discuss a reasonable universal property, the
locally universal hexagaror lux, referred to by Sewell [15] as hex-RPO. These can be
used to generate a labelled transition system with information about both contexts and
parameters, reminiscent of work on tile systems [2].

In order to understand this universal property, we consider its relationship with slice
pushouts and coslice pullbacks in the underlying category. It is convenient to work in
slices of the so-called twisted arrow category. We show in Theorem 1 that a category has
luxes if and only if it has slice pushouts, coslice pullbacks and these ‘commute.’” This
result allows us isolate flicient conditions for luxes to exist. Assuming that the under-
lying category has mono arrows, we show that bisimilarity is a congruence. Finally, we
examine how the theory generalises to G-categories.

Definition 3 (Open reactive system)An open reactive systef is a triple(C, D, R)
consisting of:

— a categonC with a distinguished object 0 — we shall usually refer to its arrows as
contexts and, specifically, to the arrows with domain 0 as terms;

— a composition reflecting subcategddyof C — the arrows oD are termeckvalua-
tion contexts;

— asetR of pairs of arrows oC, so that if(l, r) € R, then the domains and codomains
of | andr are equal — we shall refer ® as the set of reduction rules.
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C/lwr\dD
pI lq
N

Fig. 2. A hexagon.

Given an open reactive systeth one can define a reduction relation on the terms
of C as follows:a—= @’ if a = dIxanda’ = drx for somed € D, x € C, and(l,r) € R.

We shall refer to commutative diagrams such as the one illustrated if Figure 2 as
commutative hexagons, or simphexagonsThe following universal property defines
locally universal hexagons, or luxes.

Definition 4 (Luxes). A locally universal hexagoflux) for the hexagon of Fig. 2 is a
hexagon that factors through it (cf. diagr@yand that additionally satisfies a universal
property:

for any other such hexagon (cf. diagrém there exist uniqug” : Y — Y" and
Z’ . X’ = X such that diagrami{) is commutativeh = Wh” andz = z'Z.

N /\ RN

C—>Y%D C—Y +——D C—>Y<—D
dl Jo ol SR o
A%XHB A<— — B A<—x—>
A \?/ D
\Y \Y X
() (i) (iii)

We denote the lux of diagran) @bove as pﬁ)i)g,(q).

We shall say that a catego@/has luxes if every hexagon has a lux. As was the case
for IPOs, in categories with luxes one does not need to know which hexagon is a lux
for: if a hexagon is a lux, then it is such for all hexagons through which it factors. This
property, analogous to Lemma 3, will be proved formally as Lemma 7 below.

In order obtain first intuitions about luxes, let us consider a very simple example.
Below we denote string concatenation by ; noted in diagrammatic order (i.e., left-to-
right).
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SN AN R
S R N O
NSNS NANS

Fig. 3. Luxes in a free monoid.

Example 4.Consider a free monoid over an alphabetiewed as a catego§with one
object. Then luxes exist i8. Consider a hexagon as in Fig. 2, where; c = b; g; d.
Let h be the largest stix common toc andd, then there exist word$ andg so that
c = f;handd = g;h. Similarly, letz be the largest prefix common #andb, then
there exist wordx andy so thatz; x = aandzy = b. Clearlyx; p; f =t;g;gand itis
straightforward to check that the universal property holds. We now fix {a, b} and
illustrate several examples of luxesSnin Fig. 3.

Armed with the notion of lux, we are ready to define a labelled transition system on
possibly open terms.

Definition 5 (LTS). Given an open reactive systef) an LTS can be derived as fol-
lows:

— nodes are arbitrary arroves: A — C —i.e., domain does not need to be 0: terms
are possibly open;
— thereis a transitioa%» b whenever there exigt, r) € R and a lux

N
S
Y

such thab = gry — thanks to Lemma 7 below, this is well given.

5 Properties of locally universal hexagons

In order to study the properties of luxes, it is convenient to wortwiisted arrow cat-
egories that we introduce below. Here we give their definition from [6], and examine
some of its basic properties. We mention that the category can be concisely described
as the category of elements for the homfun@¢r, -) : C°? x C — Set

Definition 6 (Twisted Arrow Categories). Given a categorgZ, the twisted arrow cat-
egory Tw(C) has

— objects: the arrows dt;
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— arrows: an arrow fronf: A - Bto f': A — B’ consists of arrowp: B —» B’
andqg: A — A such thatpfq = f’; in other words, an arrow fronfi to f’ is a
factorisation off’ throughf, as in the diagram below.

B—— B

T

A<T A
In symbols, we shall usé ‘% f’ (or f’ %’ f) to denote such an arrow of T@J.3

As promised, the twisted arrow category gives us a simplified setting in which we
may consider the universal property of luxes. Indeed, our first observation is that hexes
are in 1-1 correspondence with cospans

c d
P d
in Tw(C), wherecpa=r = dgh. Secondly, it is easily verified that luxes are precisely
the coproduct diagrams in slices of T@)(

Proposition 2. A lux is a hexagon irC that results from a coproduct diagram in the
slice categoryfw(C)/r.

Notice that we explicitly talk about the coprodudiagram(as opposed tobjec),
which includes the cospan formed by the coproduct coprojections.

The following lemma justify us referring to locally universal hexagons (without
mentioning which hexagon it is universal with respect to). Thus, when talking about
categories with luxes, we shall often abuse notation — in contrasti8itiwhere we
distinguished between slice pushouts and IPOs and coslice pullbacks and IPBs.

Lemma 7. In a category with luxes, if a hexagon factors through a lux (possibly for
another hexagon) then it is a lux for that hexagon.

Proof. We know that a category has luxe® eévery slice TwC)/r has coproducts. It
is straightforward to verify that, given an arbitrary categ@ywhen every slice has

coproducts, if (A, a) Q (C,c) e (D, d) is a coproduct diagram i€/X, then for any
X eCwitha :A—- X,b:B— X andc : C —» X' suchthae = ¢ f andb’ = c'g

(A @) ; (C,c) S (D, d’) is a coproduct diagram i@/ X’.

In order to obtain further insights into luxes, we shall explore the relationship be-
tween slices of TWC) and the category of factorisations of Definition 2.

First we notice that there is a faithful functér. V/C — Tw(C) which is the first
projection on objects and takes an artowp, P) — (g, Q)to p ‘% g. Similarly, there
I

is a functorJ : (C/W)° — Tw(C) which takesh : (P, p’) - (Q.q) to ¢f IT?‘ P

3 Due to afTEX’s macro mishap, these are both rendereg-as in the proceedings version.
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I/r:FactC,r) —» Tw(C)/r J/r : FactC,r)°® — Tw(C)/r
l/\ \T/Li v A w
a ' = f a r -, .
AW v S T

v Vel oy B A

a b
RANTN N R N

N/ A—"B \¢/ wW—"w

W f\lv\/r)/g |d\NJ’r id
W

Fig. 4.7 /r and g /r on objects and arrows.

Both Fact(, r) and FactC, r)°P can be seen as full subcategories of Tyvyia the
functorsZ/r: FactC,r) —» Tw(C)/r andJ/r: FactC,r)°? — Tw(C)/r. Observe that
the second functor is well defined, sind@/WV)°P/ (V,r) = ((V,r) /(C/W))°P, for all
categorieC and arrows : V — W in it. We illustrate the actions of /r and g /r in
Fig. 4.

Lemma 8. 7/r and g /r have left adjoints, respectivety: Tw(C)/r — FactC,r) and
¥: Tw(C)/r — Fact(C, r)°P.

It is useful for us to examine the functo#sand ¥ in more detail. The action ab on
objects and arrows of TW@)/r is shown in Fig. 5. Note thab o | /r = idracic,ry @and
¥ o J/r = idractcryee- In fact, Lemma 8 states that both F#&t() and its opposite are
full reflective subcategories of T@{/r.

Corollary 1. Coproducts inTw(C)/r map via® to coproducts irFactC, r), and thus
to coproducts inV, r) /(C/W), which are pushouts i€ /W.

Corollary 2. Coproducts inTw(C)/r map via¥ to products inFactC, r), and thus to
products in(\VV/C)/ (r, W) which are pullbacks in XC.

Lemma 9. A diagram (i) is a coproduct diagram of p% randq % rin Tw(C)/r
iff (1) diagram (ii) is a pushout i€ /W, and (2) diagram (iii) is a pullback in AC.

AN N e

CﬁW—D A B
IR p\ / N A
A+ X—B X
N

(ii) (iii)
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@ : Tw(C)/r — FactC,r)

f
A—B \%

T P e N
V— W B—> W
A—— A Vv

fq e

f g\v/;/ s / x\‘ ,

‘ B T B

B 58 ML/
le\‘/\L/r\/p’ W

¥ Tw(C)/r — FactC,r)°?

f
A—B \%

BRI
V—W A—o>W
A—— N Y,

A'4‘>A
r
B—5 B p'f\¢ pi

N w
W

frl\\//;,lf,}_) q‘/ x

Fig.5. @ and ¥ on objects and arrows.

Proof. The only if direction is given by Corollaries 1 and 2. The if direction is easily
verified.

Note that Lemma 9 explicitly assumes that the resulting hex is commutative. Con-
sider for instance the following diagram 8et

o

1

L

N%

The lower hexagon results from calculating a local pushout e QL with itself in
Set/1 = Set, while the upper one from a local pullback of2 1 with itself in 0/Set=
Set Notice that the resulting inner hexagomist commutative.

We shall say that slice pushouts and coslice pullbacksmutevhen, given a com-
mutative square (the outside of Fig. 6), constructing a pushautatib in C/W and a
pullback ofc andd in V/C results in an inner commutative diagraifix(= gy).

|

e

=

Theorem 1. A categoryC has luxesffit has slice pushouts, coslice pullbacks and these
commute.

Proof. If C has slice pushouts, coslice pullbacks and these commute, then one can
explicitly construct a lux, using the conclusions of Lemma 9, since it is easy to show
that the commutativity property ensures the commutativity of the resulting hexagon.
Conversely, ifC has luxes then it is easy to show that it has slice pushouts, i.e.,
coproducts in Facg, r) and coslice pullbacks, i.e., products in F&t(). Indeed, it is
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Fig. 6. Commutativity of slice pushouts and coslice pullbacks.

enough to calculate the lux of the hexagon below:
/ ) \
c d
A B
idT Tid
A B
k %]
\Y

Using the fact thatb and ¥ preserve coproducts, the resulting lux mapsdito the
slice pushout o andb in C/W and via¥ to the coslice pullback of andd in V/C.
The commutativity property follows directly.

As an immediate consequence, it follows tisst does not have luxes, since the
commutativity property is not satisfied.

When working in categories with luxes, we can use the conclusions of Lemma 9 to
obtain a characterisation of luxes in terms of IPOs and IPBs.

Lemma 10. In a category with luxes, a commutative diagram (i) is a Jfidiagram (ii)
is an IPO and diagram (iii) is an IPB.

SN, N T
i\/@ K/ RN

0 (i) (iii)

It is useful to consider properties @f that ensure that slice pushouts and coslice
pullbacks commute. One obvious such property is that either all arro®@sacé mono,
another is that all arrows @& are epi.
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Corollary 3. The following conditions are each f#gient for the existence of luxes in
categoryC.

1. C has slice pushouts, slice pullbacks and all arrows are mono;
2. C has slice pushouits, slice pullbacks and all arrows are epi.

Theorem 2. Free PROPs have luxeBAP has luxes.

Proof. It is easy shown by induction that all arrows in free PROPs, and all arrows in
PAP, are mono. This means that no twdtdrent terms can be made equal by putting
them in the same context. Then use Lemmas 1, 2, and 5.

Theorem 3 (Congruence).Suppose that is an open reactive system. Letdenote
bisimilarity on the LTS introduced in Definition 5.

If C has luxes and all arrows dE are mono, then is a congruence, in the sense that
if p ~ g, then cp~ cq for all contexts c irC.

Proof. It is enough to show thdtcp,cq) | p~ g, c € C}is a bisimulation.

Indeed, suppose that~ g andcp %» p’. Then we can find a lux, illustrated as
the outside of diagram (i) below, whefler) e R andp’ = gry.

/ I g f/' I hg”
(@ |

T L

O

(i) (it)

We now calculate a slice pushout pk andly in diagram {), resulting inf’, g’ and
h such thathf’” = fc andhg = g. Then @) is an IPB and an IPO in the sense of
Lemma 10, using the Lemma yields tha} {s a lux. We obtairpf7> gry

Sincep ~ q, alsoq f7> g whereq ~ g'ry. Let (y) be a lux responsible for the
transition, so thatl’,r’y € R andq’ = g”’r’y’. Pasting the IPOq) results in a hexagon
which is an IPO. Using the fact thhtis mono, it is also an IPB. Thusq%» hg. But
p’ = gry = hg'ry, and sincey’ ~ g'ry’, the proof is complete.

Dually, the following holds.
Proposition 3. If C has luxes and all arrows @ are epi, then px gx for all x inC.

As a consequence of Theorem 2 and the fact that the arrows of free PROPs are
mono, the LTS obtained from Definition 5 for any reactive system over a free PROP
yields a congruent bisimilarity.
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6 Structural congruence as invertible 2-cells

In §3.5 we gave a rough description of how to generalise the concepts of IPOs and IPBs
to G-categories. Here we give a brief description of how to generalise the theory of
luxes. The definition of G-lux is simple to state.

Definition 7 (G-lux). Given a G-categorg, the definition of TwC) can easily be ex-
tended to a G-category. The arrows are now twisted squares with a 2-cell, and the 2-cells
are 2-cells between the top and bottom components such that everything commutes. A
G-lux is a bicoproduct in pseudo-slice category QM.

An open G-reactive system is simply an open reactive system on a G-category, the
only extra requirement is for the subcategory of evaluation contexts to be full on the
2-dimensional structure.

Given a G-reactive system, it is easy to extend Definition 5 to generate an LTS using
G-luxes. One obtains a transition system with possibly open terms as states. It is also
possible to consider an LTS where the states are terms quotiented by isomorphism (or,
in process calculus terminology, structural congruence) —the congruence theorem holds
in both instances; see [17, Ch. 2] for details.

It is fairly straightforward to rework the theory presented in the previous section in
this more general setting, but we omit the details here. Using the concepts discussed in
§3.5, one obtains generalised versions of Theorem 1, Lemma 10 and Theorem 3. In the
latter, the mono requirement is replaced by a 2-categorical version which states that for
any arrowf and 2-cellsy andg, if fa = fgthena = 8.

Proposition 4. PA2CP(cf. Example 3) has G-luxes.

Proof (sketch).The proof follows the general structure of those of Theorem 2 and
Lemma 2. To show th@A2CP has pseudo-slice bipushouts, consider a 2ecetl= t’
with decompositions = ca, t' = db. These decompositions correspond to monotonic
functionsAc,, Agp @s sketched in the proof of Lemma 1. The following functiorSgn

1if Acalp) = 1 andAgp(@(p)) = 1
A1(p) =4 2if Acalp) = 1 andAgn(@(p)) = 2
3if Acalp) = 2

(wherea : S; — Sy is the bijection, induced by, between positions in terms) defines a
decompositiort = xyz and moreover = a. Analogously one obtains a decomposition

t = Xy'Z, withZ = bandx = x. These decompositions form the 1-cell part of the
required pseudo-slice bipushout square; to find the required 2-cells, proceed as in the
case of free monoids and permutations in [17].

Example 5.We can construct an open (G-)reactive systerPAACP by letting the set

of reduction rulesR be the singleton consisting of the single rgel | a.2,1 | 2). In the
following, we shall use?, Q andX as meta variables which stand for any closed term
(arrow 0— 1) of PA2CP.
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1 1
=N /N /N
2 1 1 1
@Py] = Tauaz api]T = Tauaz aPiaQ] = Taua2

1 2 1 2
\ 1 /<\Rl) 31’\ 1 /<\P,1> \ /<\P.Q>

1 1 1
l|§_2/\_;\1|§.Q 1|ao/\_;\ llaPlé.Q/‘_,\aXu
2 1 1 1 1 1
@PEQLT RN Tavaz aPT = Tauaz a1l = Tauaz

1 2 0 2 1 2
’\ 1 /(\F’,D \ 0 /<\RQ> ;\ 0 /:P,Q)

Fig. 7. G-luxes inPA2CP.

The subcategory of evaluation contexts is taken to be the smallest composition re-
flecting 2-full 2-subcategory which includes arrows of the foit P) : 1 — 1. In
more intuitive terms, the non-evaluation contexts are precisely the contexts which have
a hole under a prefix.

In Fig. 7, we illustrate several examples of G-luxes, which in turn lead to labels of

the induced LTS. Thus, the top left diagram gives a transit#oR 1) 122, p|1,the
next diagram leads to a transitiecP | 1 = P | 1. The next transition induced is

a.P|aQ—» P| Q, which can be seen as internal reduction since no external context
or parameter is required. In the second row, the first lux from the left demonstrates the
function of the 2-cells irPA2CP: herey is the unique permutatioaP | aQ | al —

aP|al|aQ. The label generated (8P| a.Q, 1) 224» aP|a1]aQ.

The final two diagrams illustrate what we believe is the main problem with luxes —
indeed, the problem can be observed already in the much simpler Example 4. Roughly,
while the universal property of luxes ensures that there is no redundant information in
the contexts and in the parameters, there may still be some overlap between contexts
and parameters. Indeed, consider the middle diagram of the second row of Fig. 7. The
lux leads to the transitioa.P 2225 p | Q. However, the information irQ is not
necessary for this reduction, since it appears both in the context on the left and in the
parameter on the right. Unfortunately, sirf@es arbitrary, this means that the resulting
LTS is infinitely branching. The final diagram is even more redundant, since no part
of the term is actually necessary for the reduction; now we béaeppearing both as
a parameter an the left and as part of the context on the rightPamal Q appearing
both as the parameters on the right and as part of the context on the left. This diagram

induces the transitioa.l 1252% a X | P| Q.
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></oX
A

N

\Y

EN

Fig. 8. An irredundant hexagon.

7 Towards a general theory

Let us consider the following simple property, in order to rule out some of the ‘redun-
dant’ luxes identified in Example 5.

Definition 8 (Irredundant hexagon). A hexagon is said to be irredundant when there
existk: A —» D andl: B — D so that all regions of Fig. 8 are commutative; that is
Ib = pa, cl = dg, ka= gbanddk = cp.

A lux is saidirredundantwhen it is irredundant as a hexagon. The property can
be extended to cover G-luxes in the obvious way, that is, instead of commutativity one
requires the presence of compatible 2-cells.

Example 6.Consider the luxes illustrated in Fig. 3 and discussed in Example 4. It is
easy to show that the first three diagrams are irredundant as hexes, but the final one is
not. Now consider the G-luxes illustrated in Fig. 7 and discussed in Example 5. Again,
all of the luxes apart from the middle and the right lux of the second row are irredundant.

Thus, by considering irredundant luxes, we eliminate the problematic luxes identi-
fied in our case studies. The obvious next steps are to alter the LTS definition so that
only irredundant luxes are taken into account, and to study bisimilarity on the resulting
structures. Alas, the simple-minded modification to Definition 5 will not do: the tech-
nique we use to prove our congruence results (viz., Theorem 3 and Proposition 3) does
not stand for irredundant luxes alone, as a lux that is a factor of an irredundant lux need
not be irredundant itself. Indeed, bisimilarity in generahét a congruence. Recalling
e.g. the reactive system of Example 5, and consider the possible labels of transitions
with domains of the forna.P. If a reduction involves.P, then it must occur in context
with an outpufa.Q, for someQ; this introduces redundancy, smust arise as a pa-
rameter that instantiates the reduction rule. Ta#shasno irredundant labels, which
impliesa.P ~ b.P, for all a # b. Buta.P can reduce in the presence of an outputon
while b.P cannot, and so congruence is broken. As future work, we plan to study ways
of deriving transition systems for open terms that at the same time carry no redundancy
in the labels, and are ficient for coinductive reasoning.

In any case, we feel that the framework for deriving labelled transition systems from
reductions is still in its infancy, and requires further development. Our ultimate goal is
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an abstract method that, when applied to the standard reduction system of a calculus
like, say, ther-calculus, yields a labelled transition system on which bisimilarity is a
congruence, and moreover: (1) gives rise to feasible coinductive techniques, and (2)
is fully abstract with respect to standard equivalences defined in terms of contextual
closures (such as barbed congruence). The final theory will necessarily involve a satis-
factory treatment of variables, parameters and parametric rules. We believe that luxes
and irredundancy, introduced in this paper, shall serve as important tools in our future
research on ‘labels from reductions.’
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