Abstract
The intersection of algebra and coalgebra, i.e., the collection of all categories that are varieties as well as covarieties, is proved to consist of precisely the presheaf categories.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adámek, J., Porst, H.-E.: On varieties and covarieties in a category. Math. Structures Comput. Sci. 13, 201–232 (2003)
Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of abstract data types. Wiley and Teubner, Chichester (1996)
Linton, F.E.J., Paré, R.C.: Injectives in topoi I: Representing coalgebras as algebras. Lect. Notes Mathem., vol. 719, pp. 196–206. Springer, Heidelberg (1970)
MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)
Porst, H.-E.: What is concrete equivalence? Appl. Categorical Structures 2, 57–70 (1994)
Porst, H.-E., Dzieron, C.: On coalgebras which are algebras. In: Gähler, Preuss (eds.) Categorical Structures and Applications, pp. 227–234. World Scientific Publ., Singapore (2004)
Reiterman, J.: One more cagorical model of universal algebra. Math. Z. 161, 137–146 (1978)
Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249, 3–80 (2000)
Trnková, V.: Some properties of set functors. Comment Math. Univ. Carolinae 10, 323–352 (1969)
Trnková, V.: On descriptive classification of set-functors I. Comment. Math. Univ. Carolinae 12, 143–174 (1971)
Worrell, J.: A note on coalgebras and presheaves. Electr. Notes Theor. Comput. Sci. 65(1) (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adámek, J. (2005). Algebra ∩ Coalgebra = Presheaves. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_5
Download citation
DOI: https://doi.org/10.1007/11548133_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28620-2
Online ISBN: 978-3-540-31876-7
eBook Packages: Computer ScienceComputer Science (R0)