Skip to main content

Algebra ∩ Coalgebra = Presheaves

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3629))

Included in the following conference series:

  • 564 Accesses

Abstract

The intersection of algebra and coalgebra, i.e., the collection of all categories that are varieties as well as covarieties, is proved to consist of precisely the presheaf categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., Porst, H.-E.: On varieties and covarieties in a category. Math. Structures Comput. Sci. 13, 201–232 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of abstract data types. Wiley and Teubner, Chichester (1996)

    MATH  Google Scholar 

  3. Linton, F.E.J., Paré, R.C.: Injectives in topoi I: Representing coalgebras as algebras. Lect. Notes Mathem., vol. 719, pp. 196–206. Springer, Heidelberg (1970)

    Google Scholar 

  4. MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)

    Google Scholar 

  5. Porst, H.-E.: What is concrete equivalence? Appl. Categorical Structures 2, 57–70 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Porst, H.-E., Dzieron, C.: On coalgebras which are algebras. In: Gähler, Preuss (eds.) Categorical Structures and Applications, pp. 227–234. World Scientific Publ., Singapore (2004)

    Chapter  Google Scholar 

  7. Reiterman, J.: One more cagorical model of universal algebra. Math. Z. 161, 137–146 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249, 3–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Trnková, V.: Some properties of set functors. Comment Math. Univ. Carolinae 10, 323–352 (1969)

    MATH  MathSciNet  Google Scholar 

  10. Trnková, V.: On descriptive classification of set-functors I. Comment. Math. Univ. Carolinae 12, 143–174 (1971)

    MATH  MathSciNet  Google Scholar 

  11. Worrell, J.: A note on coalgebras and presheaves. Electr. Notes Theor. Comput. Sci. 65(1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adámek, J. (2005). Algebra ∩ Coalgebra = Presheaves. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_5

Download citation

  • DOI: https://doi.org/10.1007/11548133_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics