Abstract
We present ACPc, a process algebra with conditional expressions in which the conditions are taken from a Boolean algebra, and extensions of this process algebra with mechanisms for condition evaluation. We confine ourselves to finitely branching processes. This restriction makes it possible to presentc in a concise and intuitively clear way, and to bring the notion of splitting bisimulation equivalence and the issue of condition evaluation in process algebras with conditional expressions to the forefront.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60, 109–137 (1984)
Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)
Baeten, J.C.M., Bergstra, J.A., Mauw, S., Veltink, G.J.: A process specification formalism based on static COLD. In: Bergstra, J.A., Feijs, L.M.G. (eds.) Algebraic Methods 1989. LNCS, vol. 490, pp. 303–335. Springer, Heidelberg (1991)
Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In: Broy, M. (ed.) Programming and Mathematical Methods. NATO ASI Series, vol. F88, pp. 273–323. Springer, Heidelberg (1992)
Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 46–91. Springer, Heidelberg (1994)
Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theoretical Computer Science 177, 381–405 (1997)
Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32, 137–161 (1985)
Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31, 560–599 (1984)
Bergstra, J.A., Ponse, A.: Process algebra and conditional composition. Information Processing Letters 80, 41–49 (2001)
van der Zwaag, M.B.: Models and Logics for Process Algebra. PhD thesis, Programming Research Group, University of Amsterdam, Amsterdam (2002)
Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective conditions. Computer Science Report 05-03, Department of Mathematics and Computer Science, Eindhoven University of Technology (2005)
Monk, J.D., Bonnet, R. (eds.): Handbook of Boolean Algebras, vol. 1. Elsevier, Amsterdam (1989)
Hoare, C.A.R., Hayes, I.J., Jifeng, H., Morgan, C.C., Roscoe, A.W., Sanders, J.W., Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Communications of the ACM 30, 672–686 (1987)
Halmos, P.R.: Lectures on Boolean Algebras. Mathematical Studies, Van Nostrand, Princeton, NJ (1963)
Busi, N., van Glabbeek, R.J., Gorrieri, R.: Axiomatising ST-bisimulation semantics. In: Olderog, R.R. (ed.) PROCOMET 1994. IFIP Transactions A, vol. 56, pp. 169–188. North-Holland, Amsterdam (1994)
Baeten, J.C.M., Verhoef, C.: Concrete process algebra. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. IV, pp. 149–268. Oxford University Press, Oxford (1995)
Groote, J.F., Ponse, A.: Proof theory for μCRL: A language for processes with data. In: Andrews, D.J., Groote, J.F., Middelburg, C.A. (eds.) Semantics of Specification Languages. Workshops in Computing Series, pp. 232–251. Springer, Heidelberg (1994)
Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Information and Control 78, 205–245 (1988)
Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes. Workshops in Computing Series, pp. 26–62. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bergstra, J.A., Middelburg, C.A. (2005). Strong Splitting Bisimulation Equivalence. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_6
Download citation
DOI: https://doi.org/10.1007/11548133_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28620-2
Online ISBN: 978-3-540-31876-7
eBook Packages: Computer ScienceComputer Science (R0)