Skip to main content

Strong Splitting Bisimulation Equivalence

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3629))

Included in the following conference series:

  • 510 Accesses

Abstract

We present ACPc, a process algebra with conditional expressions in which the conditions are taken from a Boolean algebra, and extensions of this process algebra with mechanisms for condition evaluation. We confine ourselves to finitely branching processes. This restriction makes it possible to presentc in a concise and intuitively clear way, and to bring the notion of splitting bisimulation equivalence and the issue of condition evaluation in process algebras with conditional expressions to the forefront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60, 109–137 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  3. Baeten, J.C.M., Bergstra, J.A., Mauw, S., Veltink, G.J.: A process specification formalism based on static COLD. In: Bergstra, J.A., Feijs, L.M.G. (eds.) Algebraic Methods 1989. LNCS, vol. 490, pp. 303–335. Springer, Heidelberg (1991)

    Google Scholar 

  4. Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In: Broy, M. (ed.) Programming and Mathematical Methods. NATO ASI Series, vol. F88, pp. 273–323. Springer, Heidelberg (1992)

    Google Scholar 

  5. Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 46–91. Springer, Heidelberg (1994)

    Google Scholar 

  6. Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theoretical Computer Science 177, 381–405 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32, 137–161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31, 560–599 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bergstra, J.A., Ponse, A.: Process algebra and conditional composition. Information Processing Letters 80, 41–49 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. van der Zwaag, M.B.: Models and Logics for Process Algebra. PhD thesis, Programming Research Group, University of Amsterdam, Amsterdam (2002)

    Google Scholar 

  11. Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective conditions. Computer Science Report 05-03, Department of Mathematics and Computer Science, Eindhoven University of Technology (2005)

    Google Scholar 

  12. Monk, J.D., Bonnet, R. (eds.): Handbook of Boolean Algebras, vol. 1. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  13. Hoare, C.A.R., Hayes, I.J., Jifeng, H., Morgan, C.C., Roscoe, A.W., Sanders, J.W., Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Communications of the ACM 30, 672–686 (1987)

    Article  MATH  Google Scholar 

  14. Halmos, P.R.: Lectures on Boolean Algebras. Mathematical Studies, Van Nostrand, Princeton, NJ (1963)

    Google Scholar 

  15. Busi, N., van Glabbeek, R.J., Gorrieri, R.: Axiomatising ST-bisimulation semantics. In: Olderog, R.R. (ed.) PROCOMET 1994. IFIP Transactions A, vol. 56, pp. 169–188. North-Holland, Amsterdam (1994)

    Google Scholar 

  16. Baeten, J.C.M., Verhoef, C.: Concrete process algebra. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. IV, pp. 149–268. Oxford University Press, Oxford (1995)

    Google Scholar 

  17. Groote, J.F., Ponse, A.: Proof theory for μCRL: A language for processes with data. In: Andrews, D.J., Groote, J.F., Middelburg, C.A. (eds.) Semantics of Specification Languages. Workshops in Computing Series, pp. 232–251. Springer, Heidelberg (1994)

    Google Scholar 

  18. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Information and Control 78, 205–245 (1988)

    MATH  MathSciNet  Google Scholar 

  19. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes. Workshops in Computing Series, pp. 26–62. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergstra, J.A., Middelburg, C.A. (2005). Strong Splitting Bisimulation Equivalence. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_6

Download citation

  • DOI: https://doi.org/10.1007/11548133_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics