Abstract
The conceptual separation between computation and coordination in distributed computing systems motivates the use of peculiar entities commonly called connectors, whose task is managing the interaction among distributed components. Different kinds of connectors exist in the literature, at different levels of abstraction. We focus on a basic algebra of connectors which is expressive enough to model, e.g., all the architectural connectors of CommUnity. We first define the operational, observational and denotational semantics of connectors, then we show that the observational and denotational semantics coincide and finally we give a complete normal-form axiomatization.
Research supported by the FET-GC Project IST-2001-32747 Agile and by the project HPRN-CT-2002-00275 SegraVis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergstra, J.A., Middelburg, C.A., Stefanescu, G.: Network algebra for asynchronous dataflow. International Journal of Computer Mathematics 65, 57–88 (1997)
Bruni, R., Fiadeiro, J.L., Lanese, I., Lopes, A., Montanari, U.: New insights on architectural connectors. In: Proc. IFIP TCS 2004, pp. 367–379. Kluwer Academics, Dordrecht (2004)
Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theoret. Comput. Sci. 286(2), 247–292 (2002)
Bruni, R., Lanese, I., Montanari, U.: Normal forms for stateless connectors. Tech. Rep. TR-05-11, Computer Science Department, University of Pisa, Italy
Cazanescu, V.E., Stefanescu, G.: Towards a new algebraic foundation of flowchart scheme theory. Fundamenta Informaticae 13, 171–210 (1990)
Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-monoidal categories. Applied Categorical Structures 7, 299–331 (1999)
Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)
Degano, P., Montanari, U.: A model for distributed systems based on graph rewriting. Journal of the ACM 34(2), 411–449 (1987)
Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach. In: Proc. IEEE Conference on Automata and Switching Theory, pp. 167–180 (1973)
Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2004)
Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural connectors. In: Backhouse, R., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 178–221. Springer, Heidelberg (2003)
Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)
Goguen, J.A.: Categorical foundations for general systems theory. In: Advances in Cybernetics and Systems Research. Transcripta Books, pp. 121–130 (1973)
Hoare, C.A.R.: CSP – Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1985)
Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of Processes. Journal of Pure and Applied Algebra 115, 141–178 (1997)
Lafont, Y.: Interaction combinators. Inform. and Comput. 137(1), 69–101 (1997)
Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)
MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)
Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)
Milner, R.: Turing, computation and communication. Turing anniversary lecture (1997)
Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)
Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Aarhus University (1981)
Rensink, A.: Bisimilarity of open terms. Inform. and Comput. 156(1/2), 345–385 (2000)
Stefanescu, G.: Network Algebra. Discrete Math. and Theoret. Comp. Sci. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bruni, R., Lanese, I., Montanari, U. (2005). Complete Axioms for Stateless Connectors. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_7
Download citation
DOI: https://doi.org/10.1007/11548133_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28620-2
Online ISBN: 978-3-540-31876-7
eBook Packages: Computer ScienceComputer Science (R0)