Abstract
This paper is concerned with describing and analyzing the control actions which are accomplished by a human operator, who controls a complex dynamic system. The decision model is expressed by means of a decision table with fuzzy attributes. Decision tables are generated by the fuzzification of crisp data, basing on a set of fuzzy linguistic values of the attributes. A T-similarity relation is chosen for comparing the elements of the universe. Fuzzy partitions of the universe with respect to condition and decision attributes are generated. The task of stabilization of the aircraft’s altitude performed by a pilot is considered as an illustrative example. The limit-based and mean-based variable precision fuzzy rough approximations are determined. The measure of u-approximation quality is used for evaluating the consistency of the human operator’s decision model, and assessing the importance of particular condition attributes in the control process.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodjanova, S.: Approximation of Fuzzy Concepts in Decision Making. Fuzzy Sets and Systems 85, 23–29 (1997)
Chen, S.M., Yeh, M.S., Hsiao, P.Y.: A Comparison of Similarity Measures of Fuzzy Values. Fuzzy Sets and Systems 72, 79–89 (1995)
Dubois, D., Prade, H.: Putting Rough Sets and Fuzzy Sets Together. [16], 203–232
Fernández Salido, J.M., Murakami, S.: Rough Set Analysis of a General Type of Fuzzy Data Using Transitive Aggregations of Fuzzy Similarity Relations. Fuzzy Sets and Systems 139, 635–660 (2003)
Greco, S., Matarazzo, B., Słowiński, R.: Rough Set Processing of Vague Information Using Fuzzy Similarity Relations. In: Calude, C.S., Paun, G. (eds.) Finite Versus Infinite — Contributions to an Eternal Dilemma, pp. 149–173. Springer, Heidelberg (2000)
Katzberg, J.D., Ziarko, W.: Variable Precision Extension of Rough Sets. Fundamenta Informaticae 27, 155–168 (1996)
Lin, T.Y.: Coping with Imprecision Information — Fuzzy Logic. Downsizing Expo, Santa Clara Convention Center (1993)
Mieszkowicz-Rolka, A., Rolka, L.: Variable Precision Rough Sets in Analysis of Inconsistent Decision Tables. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 304–309. Physica, Heidelberg (2003)
Mieszkowicz-Rolka, A., Rolka, L.: Variable Precision Rough Sets: Evaluation of Human Operator’s Decision Model. In: Sołdek, J., Drobiazgiewicz, L. (eds.) Artificial Intelligence and Security in Computing Systems, pp. 33–40. Kluwer Academic Publishers, Dordrecht (2003)
Mieszkowicz-Rolka, A., Rolka, L.: Variable Precision Fuzzy Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS(Journal Subline), vol. 3100, pp. 144–160. Springer, Heidelberg (2004)
Mieszkowicz-Rolka, A., Rolka, L.: Remarks on Approximation Quality in Variable Precision Fuzzy Rough Sets Model. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 402–411. Springer, Heidelberg (2004)
Mrózek, A.: Rough Sets in Computer Implementation of Rule-Based Control of Industrial Processes. [16], 19–31
Pawlak, Z.: AI and Inteligent Industrial Applications: The Rough Set Perspective. Cybernetics and Systems: An International Journal 31, 227–252 (2000)
Peters, J.F., Skowron, A., Suraj, Z.: An Application of Rough Sets Methods in Control Design. Fundamenta Informaticae 43, 269–290 (2000)
Radzikowska, A.M., Kerre, E.E.: A Comparative Study of Fuzzy Rough Sets. Fuzzy Sets and Systems 126, 137–155 (2002)
Słowiński, R. (ed.): Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht (1992)
Ziarko, W.: Variable Precision Rough Sets Model. Journal of Computer and System Sciences 46, 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mieszkowicz-Rolka, A., Rolka, L. (2005). Variable Precision Fuzzy Rough Sets Model in the Analysis of Process Data. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_37
Download citation
DOI: https://doi.org/10.1007/11548669_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28653-0
Online ISBN: 978-3-540-31825-5
eBook Packages: Computer ScienceComputer Science (R0)