Abstract
We present a rough set approach to vague concept approximation within the adaptive learning framework. In particular, the role of extensions of approximation spaces in searching for concept approximation is emphasized. Boundary regions of approximated concepts within the adaptive learning framework are satisfying the higher order vagueness condition, i.e., the boundary regions of vague concepts are not crisp. There are important consequences of the presented framework for research on adaptive approximation of vague concepts and reasoning about approximated concepts. An illustrative example is included showing the application of Boolean reasoning in adaptive learning.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge (2000)
Pavelka, J.: On Fuzzy Logic I-III. Zeit. Math Logik Grund. Math. 25, 45–52, 119-134, 447-464 (1979)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough Membership Functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Schafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)
Polkowski, L.: Rough Sets: Mathematical Foundations. Physica, Heidelberg (2002)
Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Read, S.: Thinking about Logic. An Introduction to the Philosophy of Logic. Oxford University Press, Oxford (1995)
Skowron, A.: Rough Sets in KDD. In: 16-th World Computer Congress (IFIP 2000), Beijing, August 19-25 (2000) In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing (IIP 2000), Beijing, pp. 1–17. ishing House of Electronic Industry, Beijing (2000)URL, 1
Skowron, A.: Rough Sets and Vague Concepts. Fundamenta Informaticae 4(1-4), 417–431 (2005)
Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., Stepaniuk, J.: Information Granules and Rough-Neural Computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies, pp. 43–84. Springer, Heidelberg (2004)
Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 114–123. Springer, Heidelberg (2004)
Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)
Suraj, Z.: The synthesis problem of concurrent systems specified by dynamic information systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 418–448. Physica, Heidelberg (1998)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
Wojna, A.: Constraint based incremental learning of classification rules. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 428–435. Springer, Heidelberg (2001)
Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System Sciences 46, 39–59 (1993)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 333–353 (1965)
Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 2, 103–111 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skowron, A., Swiniarski, R. (2005). Rough Sets and Higher Order Vagueness. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_4
Download citation
DOI: https://doi.org/10.1007/11548669_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28653-0
Online ISBN: 978-3-540-31825-5
eBook Packages: Computer ScienceComputer Science (R0)