Skip to main content

User-Driven Fuzzy Clustering: On the Road to Semantic Classification

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

  • 1324 Accesses

Abstract

The work leading to this paper is semantic image classification. The aim is to evaluate contributions of clustering mechanisms to organize low-level features into semantically meaningful groups whose interpretation may relate to some description task pertaining to the image content. Cluster assignment reveals underlying structures in the data sets without requiring prior information. The semantic component indicates that some domain knowledge about the classification problem is available and can be used as part of the training procedures. Besides, data structural analysis can be applied to determine proximity and overlapping between classes, which leads to misclassification problems. This information is used to guide the algorithms towards a desired partition of the feature space and establish links between visual primitives and classes. It derives into partially supervised learning modes. Experimental studies are addressed to evaluate how unsupervised and partially supervised fuzzy clustering boost semantic-based classification capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  3. Bensaid, A., Hall, L., Bezdek, J., Clarke, L.P.: Partially supervised clustering for image segmentation. Pattern Recognition 29, 859–871 (1996)

    Article  Google Scholar 

  4. Pedrycz, W.: Knowledge-based clustering: from data to information granules. Wiley, US (2005)

    Book  MATH  Google Scholar 

  5. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  6. Roubens, M.: Fuzzy clustering algorithms and their cluster validity. European Journal of Operational Research 10, 294–301 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. on Pattern Analysis and Machine Learning 13, 841–847 (1991)

    Article  Google Scholar 

  8. Pedrycz, W.: Algorithms of fuzzy clustering with partial supervision. Pattern Recognition Letter 13, 13–20 (1985)

    Article  Google Scholar 

  9. Pedrycz, W.: Fuzzy sets in pattern recognition: methodology and methods. Pattern Recognition 23, 121–146 (1990)

    Article  Google Scholar 

  10. Borgelt, C., Kruse, R.: Shape and size regularization in expectation maximization and fuzzy clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 52–62. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Trans. on Systems, Man, and Cybernetics–Part B: Cybernetics 27, 787–795 (1997)

    Article  Google Scholar 

  12. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31, 264–323 (1999)

    Article  Google Scholar 

  13. Bezdek, J.: A convergence theorem for the isodata clustering algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 2, 1–8 (1980)

    Article  MATH  Google Scholar 

  14. Dorai, C., Venkatesh, S.: Bridging the semantic gap with computational media aesthetics. IEEE Multimedia 10, 15–17 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorado, A., Pedrycz, W., Izquierdo, E. (2005). User-Driven Fuzzy Clustering: On the Road to Semantic Classification. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_44

Download citation

  • DOI: https://doi.org/10.1007/11548669_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics