Skip to main content

Live LogicTM: Method for Approximate Knowledge Discovery and Decision Making

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

  • 1303 Accesses

Abstract

Live Logic is an integrated approach for support of the learning and decision making in conditions of uncertainty. The approach covers both induction of probabilistic logical hypotheses from known examples and deduction of the plausible solution for an unknown case based on the inducted hypotheses.

The induction method generalizes empirical data, discovering statistical patterns, expressed in logical language. The deduction method uses multidimensional ranking to reconcile contradictory patterns exhibited by a particular case.

The method was applied on clinical data of the patients with prostate cancer who underwent prostatectomy. The goal was to predict biochemical failure based on the pre- and post- operative status of the patient. The patterns found by the method proved to be insightful from the pathologist’s point of view. Most of them had been confirmed on the control dataset.

In our experiments, the predictive accuracy of the Live LogicTM was also higher than that of other tested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agraval, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. In: Advances in Knowledge Discovery and data Mining. AAAI/MIT Press, Cambridge (1995)

    Google Scholar 

  2. Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, vol. 56, pp. 49–88. Physica, Heidelberg (2000)

    Google Scholar 

  3. Borgelt, C., Kruse, R.: Induction of Association Rules: Apriori Implementation. In: 15th Conference on Computational Statistics (Compstat 2002), Berlin, Germany, Physica, Heidelberg (2002)

    Google Scholar 

  4. Klose, A., Nurnberger, A., Nauck, D.: Some Approaches to Improve the Interpretability of Neuro-Fuzzy Classifiers. In: Proc. 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1998), Aachen, pp. 629–633 (1998)

    Google Scholar 

  5. Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., GrzymaÅ‚a-Busse, J.W., Kostek, B.z., Åšwiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 375–391. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  7. Quinlan, J.: Learning logical definitions from relations. Machine Learning 5(3) (1990)

    Google Scholar 

  8. Sapir, M.: Constructing plausible hypothesis for diverse attributes. Automat. Remote control (1l), 134 – 142 (1993)

    Google Scholar 

  9. Sapir, M., Sherman, S.: A toolkit for automated search for the most general and easily interpretable hypotheses in first order logic systems. In: International Conference on Integration of Knowledge Intensive Multi-Agent Systems, KIMAS 2003, pp. 318–323 (2003)

    Google Scholar 

  10. Sapir, M.: Formalization of Induction Logic in Biomedical Research. In: 4th International Symposium on Robotics and Automation, ISRA 2004, pp. 1–8 (2004)

    Google Scholar 

  11. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  12. Stefanowski, J.: On rough set based approaches to induction of decision rules. In: Skowron, A., Polkowski, L. (eds.) Rough sets in knowledge discovery, vol. 1, pp. 500–529. Physica, Heidelberg (1998)

    Google Scholar 

  13. Triantaphyllou, E., Kovalerchuk, B., Deshpande, A.: Some recent developments of using logical analysis for inferring a Boolean function with few clauses. In: Barr, R., Helgason, R., Kennington, L. (eds.) Interfaces in Computer Science and Operations Research Series, vol. 7, pp. 215–236. Kluwer, Dordrecht (1997)

    Google Scholar 

  14. Wittkowski, K.M.: An extension to Wittkowski. J. Am Statist. Assoc., 87–258 (1992)

    Google Scholar 

  15. Wittkowski, K.M., Lee, E., Nussbaum, R., Chamian, F.N., Krueger, J.G.: Combining several ordinal measures in clinical studies. Stat. Med. 23, 1579–1592 (2004)

    Article  Google Scholar 

  16. Wittkowski, K.M.: Novel Methods for Multivariate Ordinal Data applied to Genetic Diplotypes, Genomic Pathways, Risk Profiles, and Pattern Similarity. Computing Science and Statistics 35, 626–646 (2003)

    Google Scholar 

  17. Yan, L., Verbel, D., Saidi, O.: Predicting prostate cancer recurrence via maximizing the concordance index. In: ACM SIGKDD Conference Proceedings (2004)

    Google Scholar 

  18. Zaluski, J., Szoszkiewisz, R., Krisinski, J., Stefanowski, J.: Rough Set Theory and Decison Rules in Data Analysis of Breast Cancer Patients. In: Peters, J.F., Skowron, A., GrzymaÅ‚a-Busse, J.W., Kostek, B.z., Åšwiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems Sciences 46(1), 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sapir, M., Verbel, D., Kotsianti, A., Saidi, O. (2005). Live LogicTM: Method for Approximate Knowledge Discovery and Decision Making. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_55

Download citation

  • DOI: https://doi.org/10.1007/11548669_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics