Skip to main content

Decision Theory = Performance Measure Theory + Uncertainty Theory

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

  • 1346 Accesses

Abstract

The decision theory is defined typically as the combination of utility theory and probability theory. In this paper we generalize the decision theory as the performance measure theory and uncertainty theory. Intelligent agents look for approximate optimal decisions under bounded resources and uncertainty. The $-calculus process algebra for problem solving applies the cost performance measures to converge to optimal solutions with minimal problem solving costs, and allows to incorporate probabilities, fuzzy sets and rough sets to deal with uncertainty and incompleteness.

Research supported in part by ONR under grant N00014-03-1-0421.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eberbach, E.: $-Calculus Bounded Rationality = Process Algebra + Anytime Algorithms. In: Misra, J.C. (ed.) Applicable Mathematics: Its Perspectives and Challenges, pp. 213–220. Narosa Publishing House, New Delhi (2001)

    Google Scholar 

  2. Eberbach, E., Wegner, P.: Beyond Turing Machines. In: The Bulletin of the European Association for Theoretical Computer Science (EATCS), Bulletin, October 2003, vol. 81, pp. 279–304 (2003)

    Google Scholar 

  3. Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation. In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 159–194. Springer, Heidelberg (2004)

    Google Scholar 

  4. Computational Tradeoffs under Bounded Resources. In: Horvitz, E., Zilberstein, S. (eds.) Artificial Intelligence, vol. 126, pp. 1–196 (2001)

    Google Scholar 

  5. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I & II. Information and Computation 100, 1–77 (1992)

    Google Scholar 

  6. Pawlak, Z.: Rough Sets. Int. J. Computer and Information Sci. 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn., vol. 1995. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  8. Wegner, P., Eberbach, E.: New Models of Computation. The Computer Journal 47(1), 4–9 (2004)

    Article  MATH  Google Scholar 

  9. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  10. Zadeh, L.A.: Fuzzy Sets. Information and Control 12, 338–353 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eberbach, E. (2005). Decision Theory = Performance Measure Theory + Uncertainty Theory. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_57

Download citation

  • DOI: https://doi.org/10.1007/11548669_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics