Skip to main content

Characterizations of Attributes in Generalized Approximation Representation Spaces

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

Abstract

We discuss characterizations of three important types of attribute sets in generalized approximation representation spaces, in which binary relations on the universe are reflexive. Many information tables, such as consistent or inconsistent decision tables, variable precision rough set models, consistent decision tables with ordered valued domains and with continuous valued domains, and decision tables with fuzzy decisions, can be unified to generalized approximation representation spaces. A general approach to knowledge reduction based on rough set theory is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beynon, M.: Reducts within the variable precision rough sets model: A further inverstigation. European Journal of Operational Research 134, 592–605 (2001)

    Article  MATH  Google Scholar 

  2. Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference relation by dominance relations. European Journal of Operational Research 117, 63–83 (1999)

    Article  MATH  Google Scholar 

  3. Iwinski, T.B.: Ordinal information system, I. Bulletin of the Polish Academy of Sciences, Mathematics 36, 467–475 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Kryszkiewicz, M.: International Journal of Intelligent Systems 16, 105–120 (2001)

    Article  MATH  Google Scholar 

  5. Leung, Y., Wu, W.-Z., Zhang, W.-X.: Knowledge acquisition in incomplete information systens: a rough set approach. European Journal of Operational Research 168, 164–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159, 255–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nguyen, H.S., Slezak, D.: Approximation reducts and association rules correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pawlak, Z.: Rough Sets—Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  10. Qiu, G.-F., Li, H.-Z., Xu, L.D., Zhang, W.-X.: A knowledge processing method for intelligent systems based on inclusion degree. Expert Systems 4, 187–195 (2003)

    Article  Google Scholar 

  11. Sai, Y., Yao, Y.Y., Zhong, N.: Data analysis and mining in ordered information tables. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 497–504 (2001)

    Google Scholar 

  12. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Set Theory, pp. 331–336. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  13. Slezak, D.: Searching for dynamic reducts in inconsistent decision tables. In: Proceedings of IPMU 1998, 2nd edn., Paris, France, pp. 1362–1369 (1998)

    Google Scholar 

  14. Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences (to appear)

    Google Scholar 

  15. Yao, Y.Y., Wong, S.K.M.: Generalization of rough sets using relationships between attribute values. In: Proceedings of the 2nd Annual Joint Conference on Information Sciences, pp. 30–33 (1995)

    Google Scholar 

  16. Zhang, W.-X., Leung, Y., Wu, W.-Z.: Information Systems and Knowledge Discovery. Science Press, Beijing (2003)

    Google Scholar 

  17. Zhang, M., Wu, W.-Z.: Knowledge reduction in information systems with fuzzy decisions. Chinese Journal of Engineering Mathematics 20, 53–58 (2003)

    MATH  Google Scholar 

  18. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, GF., Zhang, WX., Wu, WZ. (2005). Characterizations of Attributes in Generalized Approximation Representation Spaces. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_9

Download citation

  • DOI: https://doi.org/10.1007/11548669_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics