Abstract
A common practice of human learning and knowledge management is to use general rules, exception rules, and exceptions to rules. One of the crucial issues is to find a right mixture of them. For discovering this type of knowledge, we consider “rule + exception”, or rule-plus-exception, strategies. Results from psychology, expert systems, genetic algorithms, and machine learning and data mining are summarized and compared, and their implications to knowledge management and discovery are examined. The study motivates and establishes a basis for the design and implementation of new algorithms for the discovery of “rule + exception” type knowledge.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973)
Berzal, F., Cubero, J.C., Cuenca, F., Medina, J.M.: Relational decomposition through partial funcational dependencies. Data and Knowledge Engineering 43, 207–234 (2002)
Berzal, F., Cubero, J.C., Sánchez, D., Serrano, J.M.: ART: a hybrid classification model. Machine Learning 54, 67–92 (2004)
Cendrowska, J.: PRISM: an algorithm for inducing modular rules. International Journal of Man-Machine Studies 27, 349–370 (1987)
Compton, P., Jansen, B.: Knowledge in context: a strategy for expert system maintenance. In: The Second Australian Joint Conference on Artificial Intelligence, pp. 292–306 (1988)
Gaines, B.R.: The trade-off between knowledge and data in knowledge acquisition. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 491–506. AAAI/MIT Press, Menlo Park (1991)
Gaines, B.R., Compton, P.: Induction of ripple-down rules applied to modeling large databases. Journal of Intelligent Information Systems 5, 211–228 (1995)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Han, J., Kamber, M.: Data Mining: Concept and Techniques. Morgan Kaufmann Publisher, San Francisco (2000)
Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction: Processes of Inference, Learning, and Discovery. The MIT Press, Cambridge (1986)
Hsieh, C.C., Tsai, T.H., Wible, D., Hsu, W.L.: Exploiting knowledge representation in an intelligent tutoring system for English lexical errors. In: International Conference on Computers in Education (ICCE 2002), pp. 115–116 (2002)
Kacprzyk, J., Szkatula, G.: A softened formulation of inductive learning and its use for coronary disease data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 200–209. Springer, Heidelberg (2005)
Knorr, E.M., Ng, R.T.: A unified notion of outliers: properties and computation. In: Proceedings of KDD 1997, pp. 219–222 (1997)
Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)
Li, J.: Constructing Classification Trees with Exception Annotations for Large Datasets, M.Sc. Thesis, Simon Fraser University (1999)
Liu, B., Hu, M., Hsu, W.: Intuitive representation of decision trees using general rules and exceptions. In: Proceedings of AAAI 2000, pp. 615–620 (2000)
Liu, B., Hu, M., Hsu, W.: Multi-level organization and summarization of the discovered rules. In: Proceedings of SIGKDD 2002, pp. 20–23 (2002)
Michalski, R.S., Bratko, I., Kubat, M. (eds.): Machine Learning and Data Mining: Methods and Applications. Wiley, New York (1998)
Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)
Mollestad, T., Skowron, A.: A rough set frameworkf for data mining of propositional default rules. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 448–457. Springer, Heidelberg (1996)
Nosofsky, R.M., Palmeri, T.J., McKiley, S.C.: Rule-plus-exception model of classification learning. Psychological Review 101, 53–79 (1994)
Rector, A.: Defaults, context, and knowledge: alternatives for OWL-indexed knowledge bases. In: Pacific Symposium on Biocomputing 2004, pp. 226–237 (2004)
Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach. Prentice Hall, Englewood Cliffs (1995)
Suzuki, E.: Autonomous discovery of reliable exception rules. In: Proceedings of KDD 1997, pp. 259–262 (1997)
Suzuki, E., Żytkow, J.M.: Unified algorithm for undirected discovery of exception rules. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 169–180. Springer, Heidelberg (2000)
Wang, J., Zhao, M., Zhao, K., Han, S.: Multilevel data summarization from information system: a “rule + exception” approach. AI Communications 16, 17–39 (2003)
Yao, Y.Y.: Ming high order decision rules. In: Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.) Rough Set Theory and Granular Computing, pp. 125–135. Springer, Berlin (2003)
Yoshida, T., Motoda, H.: Performance evaluation of fuzing two different knowledge sources in ripple down rules method. In: Proceedings of the 2005 International Conference on Active Media Technology, pp. 69–74.
Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity oriented multidatabase mining. IEEE Transactions on Knowledge and Data Engineering 15, 952–960 (2003)
Zhou, Y., Wang, J.: Rule+exception modeling based on rough set theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 529–536. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, Y., Wang, FY., Wang, J. (2005). “Rule + Exception” Strategies for Knowledge Management and Discovery. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_8
Download citation
DOI: https://doi.org/10.1007/11548706_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28660-8
Online ISBN: 978-3-540-31824-8
eBook Packages: Computer ScienceComputer Science (R0)