Skip to main content

Basis of Solutions for a System of Linear Inequalities in Integers: Computation and Applications

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

  • 1492 Accesses

Abstract

We define a basis of solutions of a system of linear inequalities and present a general algorithm for finding such a basis. Our algorithm relies on an algorithm for finding a Hilbert basis for the set of nonnegative solutions of a system of linear inequalities and can be used in conjunction with any such algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K., Weismantel, R., Wolsey, L.A.: Non-standard approaches to integer programming. Discrete Applied Mathematics 123(1-3), 5–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ajili, F., Contejean, E.: Avoiding slack variables in the solving of linear Diophantine equations and inequations. Theoret. Comput. Sci. 173, 183–208 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, A., Voronkov, A. (eds.) Hanbook of Automated Reasoning, ch. 12, vol. I, pp. 751–842. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  4. Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample to an integer analogue of Carathéodory’s theorem. J. Reine Angew. Math. 510, 179–185 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Domenjoud, E.: Solving systems of linear Diophantine equations: An algebraic approach. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 141–150. Springer, Heidelberg (1991)

    Google Scholar 

  6. Durand, A., Hermann, M., Juban, L.: On the complexity of recognizing the hilbert basis of a linear diophantine system. In: Kutylowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 92–102. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Filgueiras, M., Tomás, A.P.: A fast method for finding the basis of nonnegative solutions to a linear Diophantine equation. J. Symbolic Comput. 19, 507–526 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Filgueiras, M., Tomás, A.P.: Solving linear Diophantine equations using the geometric structure of the solution space. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 269–283. Springer, Heidelberg (1997)

    Google Scholar 

  9. Giles, R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear Algebra and Appl. 25, 191–196 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordan, P.: Über die auflösung linearer gleichungen mit reellen coefficienten. Math. Ann. 6, 23–28 (1873)

    Article  MathSciNet  Google Scholar 

  11. Halbwachs, N.: Delay analysis in synchronous programs. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 333–346. Springer, Heidelberg (1993)

    Google Scholar 

  12. Hemmecke, R.: On the computation of Hilbert bases and extreme rays of cones. E-print arXiv:math.CO/0203105 (March 2002)

    Google Scholar 

  13. Henk, M., Weismantel, R.: On minimal solutions of linear diophantine equations. Contrib. Algebra and Geometry 41(1), 49–55 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Henzinger, T., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)

    Google Scholar 

  15. Hermann, M., Juban, L., Kolaitis, P.G.: On the complexity of counting the hilbert basis of a linear diophnatine system. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 13–32. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Hilbert, D.: Über die endlichkeit des invariantensystems für binäre grundformen. Math. Ann. 33, 223–226 (1888) (In German)

    Article  MathSciNet  Google Scholar 

  17. Huet, G.P.: An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Inform. Process. Lett. 7, 144–147 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lambert, J.: Une borne pour générateurs des solutions entière positives d’une équation diophantienne linéaire (A bound for the minimal positive integer solutions of a linear diophantine equation) (in French). C. R. Acad. Sci. Paris Sér. I Math. 305, 39–40 (1987)

    MATH  Google Scholar 

  19. Mayr, E.W.: Some complexity results for polynomial ideals. J. Complexity 13(3), 303–325 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite normal form. In: proceedings ISAAC 2001, pp. 231–236. ACM, New York (2001)

    Google Scholar 

  21. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pasechnik, D.V.: On computing Hilbert bases via the Elliot–MacMahon algorithm. Theoret. Comput. Sci. 263, 37–46 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991)

    Google Scholar 

  24. Rybina, T., Voronkov, A.: Using canonical representations of solutions to speed up infinite-state model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 386–400. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Rybina, T., Voronkov, A.: Fast infinite-state model checking in integer-based systems. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 546–573. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  27. Schulz, A., Weismantel, R.: An oracle-polynomial time augmentation algorithm for integer programming. In: proceedings ACM–SIAM SODA 1999, pp. 967–968 (1999)

    Google Scholar 

  28. Sebő, A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Kannan, R., Pulleyblank, W.R. (eds.) Proceedings IPCO 1990, pp. 431–455. University of Waterloo Press (1990)

    Google Scholar 

  29. Stickel, M.E.: A unification algorithm for associative-commutative functions. J. ACM 28, 423–434 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. van der Corput, J.G.: Über systeme von linear-homogenen Gleichungen und Ungleichungen. Proc. Roy. Acad. Amsterdam 34, 368–371 (1931) (in German)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chubarov, D., Voronkov, A. (2005). Basis of Solutions for a System of Linear Inequalities in Integers: Computation and Applications. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_23

Download citation

  • DOI: https://doi.org/10.1007/11549345_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics