Skip to main content

Asynchronous Deterministic Rendezvous in Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

Two mobile agents (robots) having distinct labels and located in nodes of an unknown anonymous connected graph, have to meet. We consider the asynchronous version of this well-studied rendezvous problem and we seek fast deterministic algorithms for it. Since in the asynchronous setting meeting at a node, which is normally required in rendezvous, is in general impossible, we relax the demand by allowing meeting of the agents inside an edge as well. The measure of performance of a rendezvous algorithm is its cost: for a given initial location of agents in a graph, this is the number of edge traversals of both agents until rendezvous is achieved. If agents are initially situated at a distance D in an infinite line, we show a rendezvous algorithm with cost O(D|L min |2) when D is known and O((D + |L max |)3) if D is unknown, where |L min | and |L max | are the lengths of the shorter and longer label of the agents, respectively. These results still hold for the case of the ring of unknown size but then we also give an optimal algorithm of cost O(n|L min |), if the size n of the ring is known, and of cost O(n|L max |), if it is unknown. For arbitrary graphs, we show that rendezvous is feasible if an upper bound on the size of the graph is known and we give an optimal algorithm of cost O(D|L min |) if the topology of the graph and the initial positions are known to agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. FOCS 1979, pp. 218–223 (1979)

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: Int. Series in Operations research and Management Science, Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  8. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)

    Google Scholar 

  10. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Log. 48, 722–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. STOC 1990, pp. 369–378.

    Google Scholar 

  15. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381 (1989)

    Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. PODC 1990, pp. 119–131 (1990)

    Google Scholar 

  21. Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)

    Google Scholar 

  23. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  25. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)

    MATH  Google Scholar 

  26. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U. (2005). Asynchronous Deterministic Rendezvous in Graphs. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_24

Download citation

  • DOI: https://doi.org/10.1007/11549345_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics