Abstract
We introduce nondeterministic graph searching with a controlled amount of nondeterminism and show how this new tool can be used in algorithm design and combinatorial analysis applying to both pathwidth and treewidth. We prove equivalence between this game- theoretic approach and graph decompositions called q-branched tree decompositions, which can be interpreted as a parameterized version of tree decompositions. Path decomposition and (standard) tree decomposition are two extreme cases of q-branched tree decompositions. The equivalence between nondeterministic graph searching and q-branched tree decomposition enables us to design an exact (exponential time) algorithm computing q-branched treewidth for all q ≥ 0, which is thus valid for both treewidth and pathwidth. This algorithm performs as fast as the best known exact algorithm for pathwidth. Conversely, this equivalence also enables us to design a lower bound on the amount of nondeterminism required to search a graph with the minimum number of searchers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference (UAI-2001), pp. 7–15. Morgan Kaufmann Publishers, San Francisco (2001)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)
Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science 5, 33–49 (1991)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)
Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. Discrete Applied Mathematics 136(2-3), 183–196 (2004)
Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comp. Sc. 172, 233–254 (1997)
Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)
Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for minimum-weight vertex separators. In: 37th ACM Symposium on Theory of Computing, STOC 2005 (2005)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
Fomin, F.V., Kratsch, D., Todinca, I.: Exact algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Goldsmith, J., Levy, M., Munhenk, M.: Limited Nondeterminism. SIGACT News, Introduction to Complexity Theory Column 13 (June 1996)
Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)
Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comp. Sc. 47, 205–218 (1986)
Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J. Alg. Disc. Meth. 6, 418–444 (1985)
Makedon, F.S., Sudborough, I.H.: On minimizing width in linear layouts. Disc. Appl. Math. 23, 243–265 (1989)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)
Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Combin. Theory Ser. B 58, 22–33 (1993)
Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)
Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Computing 6, 537–546 (1977)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Fraigniaud, P., Nisse, N. (2005). Nondeterministic Graph Searching: From Pathwidth to Treewidth. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_32
Download citation
DOI: https://doi.org/10.1007/11549345_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28702-5
Online ISBN: 978-3-540-31867-5
eBook Packages: Computer ScienceComputer Science (R0)