Abstract
Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer’s dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are distinct if and only if P ≠ NP). We show that if one considers AC0 isomorphisms, then there are exactly six isomorphism types (assuming that the complexity classes NP, P, ⊕L, NL, and L are all distinct).
Supported in part by DFG grant Vo 630/5-1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Balcazar, J., Immerman, N.: A first-order isomorphism theorem. SIAM Journal on Computing 26, 557–567 (1997)
Alvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Computational Complexity 9(2), 123–145 (2000)
Agrawal, M.: The first-order isomorphism theorem. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 58–69. Springer, Heidelberg (2001)
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)
Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Simple bases for Boolean co-clones. Information Processing Letters (2005) (to appear)
Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd Symposium on Foundations of Computer Science, pp. 649–658. IEEE Computer Society Press, Los Alamitos (2002)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. In: Monographs on Discrete Applied Mathematics, SIAM, Philadelphia (2001)
Dalmau, V.: Computational complexity of problems over generalized formulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)
Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)
Pippenger, N.: Pure versus impure Lisp. ACM Transactions on Programming Languages and Systems 19, 223–238 (1997)
Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)
Reith, S.: Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und Informatik, Universität Würzburg (2001)
Reingold, O.: Undirected st-connectivity in log-space. In: STOC 2005: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, New York, NY, USA, pp. 376–385. ACM Press, New York (2005)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H. (2005). The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_8
Download citation
DOI: https://doi.org/10.1007/11549345_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28702-5
Online ISBN: 978-3-540-31867-5
eBook Packages: Computer ScienceComputer Science (R0)