Skip to main content

The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer’s dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are distinct if and only if P ≠ NP). We show that if one considers AC0 isomorphisms, then there are exactly six isomorphism types (assuming that the complexity classes NP, P, ⊕L, NL, and L are all distinct).

Supported in part by DFG grant Vo 630/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Balcazar, J., Immerman, N.: A first-order isomorphism theorem. SIAM Journal on Computing 26, 557–567 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Computational Complexity 9(2), 123–145 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agrawal, M.: The first-order isomorphism theorem. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 58–69. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  5. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)

    Article  Google Scholar 

  6. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Simple bases for Boolean co-clones. Information Processing Letters (2005) (to appear)

    Google Scholar 

  7. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd Symposium on Foundations of Computer Science, pp. 649–658. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  8. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. In: Monographs on Discrete Applied Mathematics, SIAM, Philadelphia (2001)

    Google Scholar 

  9. Dalmau, V.: Computational complexity of problems over generalized formulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)

    Google Scholar 

  10. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pippenger, N.: Pure versus impure Lisp. ACM Transactions on Programming Languages and Systems 19, 223–238 (1997)

    Article  Google Scholar 

  12. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Reith, S.: Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und Informatik, Universität Würzburg (2001)

    Google Scholar 

  14. Reingold, O.: Undirected st-connectivity in log-space. In: STOC 2005: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, New York, NY, USA, pp. 376–385. ACM Press, New York (2005)

    Chapter  Google Scholar 

  15. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H. (2005). The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_8

Download citation

  • DOI: https://doi.org/10.1007/11549345_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics