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Abstract. We address the call control problem in wireless cellular net-
works that utilize Frequency Division Multiplexing (FDM) technology.
In such networks, many users within the same geographical region (cell)
can communicate simultaneously with other users of the network using
distinct frequencies. The available frequency spectrum is limited; hence,
its management should be done efficiently. The objective of the call con-
trol problem is, given a spectrum of available frequencies and users that
wish to communicate in a cellular network, to maximize the number of
users that communicate without signal interference. We study the online
version of the problem in cellular networks using competitive analysis
and present new upper and lower bounds.

1 Introduction

In this paper we study frequency spectrum management issues in wireless net-
works. We consider wireless networks in which base stations are used to build
the required infrastructure. In such systems, the architectural approach used is
the following. A geographical area in which communication takes place is divided
into regions. Each region is the calling area of a base station. Base stations are
connected via a high speed network. When a user A wishes to communicate with
some other user B, a path must be established between the base stations of the
regions where users A and B are located. Then communication is performed in
three steps: (a) wireless communication between A and its base station, (b) com-
munication between the base stations, and (c) wireless communication between
B and its base station. At least one base station is involved in the communi-
cation even if both users are located in the same region or only one of the two
users is part of the cellular network (and the other uses for example the PSTN).
Improving the access of users to base stations is the aim of this work.

Network Model. The network topology usually adopted [8, 9] is the one shown
in the left part of Figure 1. All regions are regular hexagons (cells) of the same
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size. This shape results from the uniform distribution of identical base stations
within the network, as well as from the fact that the calling area of a base station
is a circle which, for simplicity reasons, is idealized as a regular hexagon. Due
to the shape of the regions, we call these networks cellular wireless networks.

Many users of the same region can communicate simultaneously with their
base station of the network via frequency division multiplexing (FDM). The
base station is responsible for allocating distinct frequencies from the available
spectrum to users so that signal interference is avoided. Since the spectrum of
available frequencies is limited, important engineering problems related to the
efficient reuse of frequencies arise. Signal interference usually manifests itself
when the same frequency is assigned to users located in the same or adjacent
cells. Alternatively, in this case, we may say that the cellular network has reuse
distance 2. By generalizing this parameter, we obtain cellular networks of reuse
distance k in which signal interference between users assigned the same frequency
is avoided only if the users are located in cells with distance at least k.

Signal interference in cellular networks can be represented by an interference
graph G whose vertices correspond to cells and an edge (u, v) indicates that the
assignment of the same frequency to two users lying at the cells corresponding
to nodes u and v will cause signal interference. The interference graph of a
cellular network of reuse distance 2 is depicted in the right part of Figure 1. If
the assumption of uniform distribution of identical base stations does not hold,
arbitrary interference graphs can be used to model the underlying network.

Fig. 1. A cellular network and its interference graph if the reuse distance is 2.

Problem Definition. In this paper we study the call control (or call admission)
problem which is defined as follows: Given users that wish to communicate,
the call control problem on a network that supports a spectrum of w available
frequencies is to assign frequencies to users so that at most w frequencies are
used in total, signal interference is avoided, and the number of users served is
maximized.

We assume that calls corresponding to users that wish to communicate ap-
pear in the cells of the network in an online manner. When a call arrives, a
call control algorithm decides either to accept the call (assigning a frequency to
it), or to reject it. Once a call is accepted, it cannot be rejected (preempted).
Furthermore, the frequency assigned to the call cannot be changed in the future.
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We assume that all calls have infinite duration; this assumption is equivalent to
considering calls of the same duration.

Competitive analysis [4] has been used for evaluating the performance of
online algorithms for various problems. In our setting, given a sequence of calls,
the performance of an online algorithm A is compared to the performance of the
optimal algorithm OPT . Let B(σ) be the benefit of the online algorithm A on the
sequence of calls σ, i.e. the set of calls of σ accepted by A and O(σ) the benefit
of the optimal algorithm. We define the competitive ratio or competitiveness
of an algorithm A as maxσ

|O(σ)|
E[|B(σ)|] , where E [|B(σ)|] is the expectation of the

number of calls accepted by A, and the maximum is taken over all possible
sequences of calls. This definition applies to both deterministic and randomized
algorithms. Usually, we compare the performance of deterministic algorithms
against off–line adversaries, i.e. adversaries that have knowledge of the behavior
of the deterministic algorithm in advance. In the case of randomized algorithms,
we consider oblivious adversaries whose knowledge is limited to the probability
distribution of the random choices of the randomized algorithm.

Related Work. The static version of the call control problem generalizes the
famous maximum independent set problem. The online version of the problem
is studied in [1–3, 5, 7, 10, 12]. [1], [2], [7] and [10] study the call control problem
in the context of optical networks. Pantziou et al. [12] present upper bounds
for networks with planar and arbitrary interference graphs. Usually, competitive
analysis of call control focuses on networks supporting one frequency. Awerbuch
et al. [1] present a simple way to transform algorithms designed for one fre-
quency to algorithms for arbitrarily many frequencies with a small sacrifice in
competitiveness (see also [7] and [13]). Lower bounds for call control in arbitrary
networks are presented in [3].

The greedy algorithm is probably the simplest online algorithm. It considers
frequencies as positive integers. When a call arrives, it seeks for the smallest
available frequency. If such a frequency exists, the algorithm accepts the call
assigning this frequency to it, otherwise, the call is rejected. As observed in [5],
this algorithm has competitive ratio equal to the size of the maximum indepen-
dent set in the neighborhood of any node of the interference graph (see also
[12]). The competitive ratio of the greedy algorithm is a lower bound on the
competitiveness of every deterministic algorithm. In particular, this gives lower
bounds of 3, 4 and 5 on the competitiveness of every deterministic online call
control algorithm in cellular networks of reuse distance k = 2, k ∈ {3, 4, 5} and
k ≥ 6, respectively.

The first randomized algorithm with competitive ratio smaller than 3 in
cellular networks with reuse distance 2 was presented in [5]. The main drawbacks
of this algorithm are that it uses a number of random bits which is proportional
to the size of the sequences of calls and, that it works in networks that support
only one frequency. By extending the “classify and randomly select” paradigm
[1, 2, 12], the authors in [6] present a series of simpler randomized algorithms
that use a small number of random bits or comparably weak random sources, and
have small competitive ratios even in the case of arbitrarily many frequencies, in
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cellular networks of any reuse distance k. The best competitive ratio obtained is
4−Ω( 1

k ), while the randomness used is the ability to select equiprobably one out
of an odd number of distinct objects. The best competitive ratio obtained for
k = 2 is 7/3. The best known lower bounds on the competitiveness of randomized
algorithms are 13/7 and 25/12 for cellular networks of reuse distance k ≥ 2 and
k ≥ 5, respectively ([5, 6]).

Our Results. In this paper, we present (Section 2) a new online call control
algorithm with competitive ratio 16/7 for cellular networks with reuse distance 2,
improving the previous best known upper bound of 7/3. Our algorithm is based
on the “classify and randomly select” paradigm, uses only 4 random bits, and
works in networks with arbitrarily many frequencies. Furthermore, we show new
lower bounds of 2 and 2.5 on the competitiveness against oblivious adversaries
of online call control algorithms in cellular networks of reuse distance k ≥ 2 and
k ≥ 6, respectively (Section 3). Our new lower bounds improve previous ones for
almost all cases of the reuse distance (k �= 5).

2 The Upper Bound

In this section, we present the online algorithm CRS-D achieving a competitive
ratio of 16/7 against oblivious adversaries. The algorithm is based on the “clas-
sify and randomly select” paradigm. Such algorithms use a coloring of the cells
(i.e., a coloring of the nodes of the interference graph) and a classification of the
colors into not necessarily disjoint color classes. The algorithm randomly selects
one out of the available color classes and executes the greedy algorithm for calls
appearing in cells colored with colors from the selected color class, while it com-
pletely ignores (i.e., rejects) the calls appearing in any other cell. The following
lemma gives a connection between the coloring of the interference graph and
the definition of the color classes and the competitiveness of the “classify and
randomly select” algorithm that uses them.

Lemma 1 ([6]). Consider a network with interference graph G = (V, E) and
let χ be a coloring of the nodes of V with the colors of a set X. If there exist ν
sets of colors (color classes) s0, s1, ..., sν−1 ⊆ X and an integer λ ≤ ν such that

– each color of X belongs to at least λ different color classes, and
– for i = 0, 1, ..., ν−1, each connected component of the subgraph of G induced

by the nodes colored with colors in si is a clique,

then the online call control algorithm which uses the coloring χ and the ν color
classes according to the “classify and randomly select” paradigm has competitive
ratio ν/λ against oblivious adversaries.

A proof was presented in [6]. The intuition behind the proof is that (1) the
algorithm runs the greedy algorithm on a fraction of λ/ν of the cells, (2) the
optimal solution of the subsequence defined by these calls has size at least λ/ν
times the size of the original optimal solution, and (3) the greedy algorithm
computes an optimal solution when applied to the subsequence.
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Algorithm CRS-D uses a coloring of the cells with sixteen colors 0, . . . , 15
defined as follows. The cell with coordinates (x, y, x + y) is colored with color
4(x mod 4) + y mod 4. The color classes are defined as s4i+j for 0 ≤ i, j ≤ 3 as
follows:

s4i+j = {4i + j, 4i + (j + 1) mod 4, 4((i + 1) mod 4) + j,

4((i + 1) mod 4) + (j + 2) mod 4, 4((i + 2) mod 4) + (j + 1) mod 4,

4((i + 2) mod 4) + (j + 2) mod 4, 4((i + 3) mod 4) + (j + 3) mod 4}
An example of this coloring is depicted in Figure 2.

Fig. 2. The 16-coloring used by algorithm CRS-D. The grey cells are those colored
with colors in the class s0.

We now show that the coloring and the color classes used by algorithm CRS-
D satisfy the conditions of Lemma 1. Each color k = 0, 1, ..., 15 belongs to 7
of the 16 color classes s0, s1, ..., s15. For any i, j such that 0 ≤ i, j ≤ 3, color
4i+ j belongs to the color classes 4i+ j, 4i+(j−1) mod 4, 4((i−1) mod 4)+ j,
4((i− 1) mod 4)+ (j − 2) mod 4, 4((i− 2) mod 4)+ (j − 1) mod 4, 4((i− 2) mod
4) + (j − 2) mod 4, and 4((i − 3) mod 4) + (j − 3) mod 4. Now, consider the
cells colored with colors from the color class s4i+j and the corresponding nodes
of the interference graph. The connected components of the subgraph of the
interference graph defined by these nodes are of the following types:

– cliques of three nodes corresponding to cells colored with colors 4i + j, 4i +
(j+1) mod 4, and 4((i+1) mod 4)+j, respectively. Indeed, the neighborhood
of such nodes contains nodes colored with colors 4i+(j +2) mod 4, 4i+(j+
3) mod 4, 4((i+1) mod 4)+ (j +1) mod 4, 4((i+1) mod 4)+ (j +3) mod 4,
4((i+3) mod 4)+ j, 4((i+3) mod 4)+(j +1) mod 4, 4((i+3) mod 4)+(j +
2) mod 4, 4((i + 2) mod 4) + j, and 4((i + 2) mod 4) + (j + 3) mod 4 which
do not belong to class s4i+j .
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– cliques of three nodes corresponding to cells colored with colors 4((i+1) mod
4)+(j+2) mod 4, 4((i+2) mod 4)+(j+1) mod 4, and 4((i+2) mod 4)+(j+
2) mod 4, respectively. Again, the neighborhood of such nodes contains nodes
colored with colors 4i+(j +2) mod 4, 4i+(j +3) mod 4, 4((i+1) mod 4)+
(j + 1) mod 4, 4((i + 1) mod 4) + (j + 3) mod 4, 4((i + 3) mod 4) + j, 4((i +
3) mod 4)+(j+1) mod 4, 4((i+3) mod 4)+(j+2) mod 4, 4((i+2) mod 4)+j,
and 4((i + 2) mod 4) + (j + 3) mod 4 which do not belong to class s4i+j .

– isolated nodes corresponding to cells colored with color 4((i+3) mod 4)+(j+
3) mod 4. The neighborhood of such a cell consists of cells colored with colors
4i+(j+2) mod 4, 4i+(j+3) mod 4, 4((i+2) mod 4)+ j, 4((i+2) mod 4)+
(j + 3) mod 4, 4((i + 3) mod 4) + j, and 4((i + 3) mod 4) + (j + 2) mod 4
which do not belong to class s4i+j .

Hence, the coloring and the color classes used by algorithm CRS-D satisfy
the conditions of Lemma 1 for λ = 7 and ν = 16. This yields the following.

Theorem 1. Algorithm CRS-D for call control in cellular networks with reuse
distance 2 is 16/7-competitive against oblivious adversaries.

Obviously, the algorithm uses only 4 random bits for selecting equiprobably
one out of the 16 color classes.

3 Lower Bounds

In this section, using the Minimax Principle [14] (see also [11]), we prove new
lower bounds on the competitive ratio, against oblivious adversaries, of any ran-
domized algorithm in cellular networks with reuse distance k ≥ 2. We consider
networks that support one frequency; our lower bounds can be easily extended
to networks that support multiple frequencies. In our proof, we use the following
lemma.

Lemma 2 (Minimax Principle [11]). Given a probability distribution P over
sequences of calls σ, denote by EP [BA(σ)] and EP [BOPT (σ)] the expected benefit
of a deterministic algorithm A and the optimal off–line algorithm on sequences
of calls generated according to P. Define the competitiveness of A under P, cPA
to be such that

cPA =
EP [BOPT (σ)]
EP [BA(σ)]

.

Let AR be a randomized algorithm. Then, the competitiveness of A under P is a
lower bound on the competitive ratio of AR against an oblivious adversary, i.e.
cPA ≤ cAR .

So, in order to prove a lower bound for any randomized algorithm, it suffices
to define an adversary which produces sequences of calls according to a probabil-
ity distribution and prove that the ratio of the expected optimal benefit over the
expected benefit of any deterministic algorithm (that may know the probability
distribution in advance) is above some value; by Lemma 2, this value will also
be a lower bound for any randomized algorithm against oblivious adversaries.
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Theorem 2.
(a) No randomized online call–control algorithm can be better than 2-competitive
against oblivious adversaries in cellular networks with reuse distance k ≥ 2.
(b) No randomized online call–control algorithm can be better than 2.5-competi-
tive against oblivious adversaries in cellular networks with reuse distance k ≥ 6.

Proof. Due to lack of space, we prove only the first part of the theorem here. The
proof of the second part which uses similar ideas in a slightly more complicated
way will appear in the final version of the paper.

We present an adversary ADV-2 which produces sequences of calls according
to a probability distribution P2 which yields the lower bound. We show that the
expected benefit of every deterministic algorithm (that may know P2 in advance)
for such sequences of calls is at most 2, while the expected optimal benefit is
at least 4. The first statement of Theorem 2 then follows by Lemma 2. First,
we describe the sequences of calls produced by ADV-2 without explicitly giving
the cells where they appear; then, we show how to construct them in cellular
networks of reuse distance k ≥ 2.

We start by defining a simpler adversary ADV-1 that works as follows: It
first produces two calls in cells v0 and v1 which have distance at least k. Then
it tosses a fair coin.

– On HEADS, it produces two calls in cells v00 and v01 which are at distance
at least k from each other, at most k − 1 from v0 and at least k from v1.
Then, it stops.

– On TAILS, it produces two calls in cells v10 and v11 which are at distance at
least k from each other, at most k− 1 from v1 and at least k from v0. Then,
it stops.

Now, consider the set of all possible deterministic algorithms A1 working on
the sequences produced by ADV-1. Such an algorithm A1 ∈ A1 may follow one
of the following strategies:

– It may accept both calls in cells v0 and v1 presented at the first step. This
means that the calls presented in the second step cannot be accepted.

– It may reject both calls in cells v0 and v1 and then either accept one or both
calls presented in the second step or reject them both.

– It may accept only one of the two calls in cells v0 and v1 and, if the calls
produced at the second step by ADV − 1 are at distance at least k from the
accepted call, either accept one or both calls presented in the second step or
reject them both.

In the first two cases, the expected benefit of the algorithm A1 is at most 2.
In the third case, the expected benefit is 1 (in the first step) plus the expected
benefit in the second step. The latter is either zero with probability 1/2 (this is
the case where the cells of the calls produced by the adversary in the second step
are at distance at most k − 1 from the cell of the call accepted by the algorithm
in the first step) or at most 2 with probability 1/2. Overall, the expected benefit
of the algorithm is at most 2.
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The adversary ADV-2 works as follows: It first produces two calls in cells v0

and v1 which have distance at least k. Then it tosses a fair coin.

– On HEADS, it produces two calls in cells v00 and v01 which are at distance
at least k from each other, at most k − 1 from v0 and at least k from v1.
Then, it tosses a fair coin.
• On HEADS, it produces two calls in cells v000 and v001 which are at

distance at least k from each other, at most k − 1 from v0 and v00, and
at least k from v1 and v01. Then, it stops.

• On TAILS, it produces two calls in cells v010 and v011 which are at
distance at least k from each other, at most k − 1 from v0 and v01 and
at least k from v1 and v00. Then, it stops.

– On TAILS, it produces two calls in cells v10 and v11 which are at distance at
least k from each other, at most k− 1 from v1 and at least k from v0. Then,
it tosses a fair coin.
• On HEADS, it produces two calls in cells v100 and v101 which are at

distance at least k from each other, at most k − 1 from v1 and v10, and
at least k from v0 and v11. Then, it stops.

• On TAILS, it produces two calls in cells v110 and v111 which are at
distance at least k from each other, at most k − 1 from v1 and v11, and
at least k from v0 and v10. Then, it stops.

Observe that, the subsequence of the last 4 calls produced by ADV-2 essentially
belongs to the set of sequences of calls produced by ADV-1.

Now, consider the set of all possible deterministic algorithms A2 working on
the sequences produced by ADV-2. Such an algorithm A2 ∈ A2 may follow one
of the following strategies:

– It may accept both calls in cells v0 and v1 presented at the first step. This
means that the calls presented in the next steps cannot be accepted.

– It may reject both calls in cells v0 and v1 and then apply a deterministic
algorithm A1 on the subsequence presented after the first step.

– It may accept only one of the two calls in cells v0 and v1 and, then, if the
calls produced at the next steps by ADV-2 are at distance at least k from
the accepted call, apply a deterministic algorithm A1 on the subsequence
presented after the first step.

In the first case, the expected benefit of the algorithm A2 is at most 2. In
the second case, the expected benefit of A2 is the expected benefit of A1 on
the sequence of calls presented after the first step, i.e., at most 2. In the third
case, the expected benefit is 1 (in the first step) plus the expected benefit in
the next steps. The benefit of the algorithm in the next steps is either zero with
probability 1/2 (this is the case where the cells of the calls produced by the
adversary in the next steps are at distance at most k−1 from the cell of the call
accepted by the algorithm in the first step) or the expected benefit of A1 on the
sequence of calls presented after the first step, i.e., at most 2 with probability
1/2. Overall, the expected benefit of the algorithm is at most 2.
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Furthermore, the expected optimal benefit on sequences produced by ADV-2
is at least 4. Indeed, in each of the possible sequences

σ00
2 = 〈v0, v1, v00, v01, v000, v001〉, σ01

2 = 〈v0, v1, v00, v01, v010, v011〉,
σ10

2 = 〈v0, v1, v10, v11, v100, v101〉, σ11
2 = 〈v0, v1, v10, v11, v110, v111〉

generated by the ADV-2, the calls in cells 〈v1, v01, v000, v001〉, 〈v1, v00, v010, v011〉,
〈v0, v11, v100, v101〉, and 〈v0, v10, v110, v111〉 can be accepted, respectively. Overall,
the ratio of the expected optimal benefit over the expected benefit of algorithm
A2 on the sequences generated by the adversary ADV-2 is at least 2, which (by
Lemma 2) is a lower bound on the competitive ratio of any randomized algorithm
for call control.

Next, we show how the adversaryADV-2 locates the calls in cellular networks
of reuse distance k ≥ 2 completing the proof of the first part of the theorem.

The coordinates of the cells hosting possible calls produced by ADV-2 are:

v0 = (0,−k,−k) v1 = (0, k, k)
v00 = (0,−2k + 1,−2k + 1) v01 = (0,−1,−1)
v10 = (0, 1, 1) v11 = (0, 2k − 1, 2k − 1)
v000 = (k − 1,−2k + 1,−k) v001 = (−k + 1,−k,−2k + 1)
v010 = (k − 1,−k,−1) v011 = (−k + 1,−1,−k)
v100 = (k − 1, 1, k) v101 = (−k + 1, k, 1)
v110 = (k − 1, k, 2k − 1) v111 = (−k + 1, 2k − 1, k)

An example of all cells hosting possible calls produced by ADV-2 when k = 3 is
depicted in Figure 3.

Fig. 3. The calls that may be produced by the adversary ADV-2 in a cellular network
of reuse distance 3. The grey cells host calls of the sequence σ10

2 .

We have to show that any of the possible sequences of calls generated accord-
ing to P2 satisfies the constraints defined above. We have four possible sequences
to examine: σ00

2 , σ01
2 , σ10

2 and σ11
2 . We show that one of them, e.g., σ10

2 satisfies
the constraints; the proof for the other cases is similar due to symmetry. First,
the cells v0 and v1 have distance 2k ≥ k. The cells at distance at most k−1 from
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v0 are those contained between the x-rows k−1 and −k+1, between the y-rows
−2k + 1 and −1, and between the z-rows −2k + 1 and −1. The cells at distance
at most k− 1 from v1 are those contained between the x-rows k− 1 and −k +1,
between the y-rows 1 and 2k − 1, and between the z-rows 1 and 2k − 1. Hence,
cells v10, v11, v100, v101 are all at distance at least k from v0 and at most k − 1
from v1. Since k ≥ 2, the cells v10 and v11 have distance 2k − 2 ≥ k. Also, the
cells at distance at most k − 1 from v10 are those contained between the x-rows
k − 1 and −k + 1, between the y-rows −k + 2 and k, and between the z-rows
−k + 2 and k. The cells at distance at most k − 1 from v11 are those contained
between the x-rows k − 1 and −k + 1, between the y-rows k and 3k − 2, and
between the z-rows k and 3k − 2. Hence, cells v100, v101 are at distance at most
k− 1 from v10 and at least k from v11. In addition, v100 and v101 are at distance
2k − 2 ≥ k since k ≥ 2. �	

4 Conclusions

In this paper, we presented a new online call control algorithm with competitive
ratio 16/7 for cellular networks with reuse distance 2, improving the previous
best known upper bound of 7/3. The algorithm is based on the “classify and
randomly select” paradigm, uses only four random bits and works in networks
with arbitrarily many frequencies. We have also presented new lower bounds of 2
and 2.5 on the competitiveness against oblivious adversaries of online call control
algorithms in cellular networks of reuse distance k ≥ 2 and k ≥ 6, respectively.
Our new lower bounds improve previous ones for almost all cases of the reuse
distance (k �= 5).

An interesting open problem is to close the gap between 16/7 and 2 on the
competitiveness of online randomized call control algorithms in cellular networks
with reuse distance 2. In particular, improving the upper bound would require
entirely new techniques since the coloring used by algorithm CRS-D seems to be
the best possible that satisfies the conditions of Lemma 1.
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