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Abstract. The suffix tree is a key data structure for biological sequence analysis.
Even though efficient algorithms for suffix tree construction exist, for long DNA
sequences such as whole human chromosomes, their run-time is still very high . In
this paper we introduce a new parallel algorithm for suffix tree construction. This
algorithm uses a new data structure call the common prefix suffix tree (CPST). Our
parallel implementation on a PC cluster leads to significant run-time savings.

1 Introduction

The suffix tree is a compact trie of all suffixes over a string. It is a key data struc-
ture in the field of bioinformatics, since it permits very efficient solutions to many
string based problems. Examples include exact and approximate substring matching,
the longest common substring problem and the maximal repetitive structures prob-
lem [8]. Consequently, many widely used large-scale bioinformatics applications have
achieved amazing performance using suffix trees, such as MUMmer [5], REPuter [15],
and OASIS [17].

Several linear-time algorithms for suffix tree construction have been introduced
(see [8] for a summary). Among them, Ukkonen’s algorithm is most widely used. The
key feature of Ukkonen’s algorithm is to make use of suffix links, which allow the incre-
mental construction of suffix trees. Unfortunately, these algorithms are impractical for
constructing large size suffix trees because of high memory overheads. For example, the
suffix tree of the whole human chromosomes of length 3 Giga base pairs (GBp) using
the advanced space saving optimization requires 30 to 50 gigabytes of memory [14].
Therefore, new suffix tree construction approaches are required in bioinformatics be-
cause biological sequences typically have very large size and sequence datasets are
growing at an exponential rate [20].

In order to tackle the memory bottleneck problem in constructing a large size suffix
tree, researchers have tried several approaches. We summarize this research work into
four categories:

1) Space saving optimizations. This approach exploits various kinds of re-
dundancies in suffix trees to obtain more space efficiency[14]. However, the internal
structure of suffix trees doesn’t permit very significant space saving optimization
without any sacrifice of suffix tree virtues.
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2) Disk-based approaches. Disk-based approaches [7, 9, 19] hold the suffix
trees in second memory. Unfortunately, suffix tree construction has poor memory
locality since it requires a semi random walk over the tree as it is constructed [6].
Therefore, large-size suffix trees that will not fit in memory would take an unac-
ceptably long time to construct and be accessed due to excessive page faulting.

3) New data structures. Another method is to develop alternative data struc-
tures which store less information than suffix trees and therefore have lower mem-
ory overheads. Some new data structures are suffix array [18], level compressed
trie [1], suffix binary search tree [10], suffix cactus [12] and PT-tree [4]. This ap-
proach has the following two common shortcomings [14]. Firstly, they are specif-
ically designed for certain applications and can not be adapted to other kinds of
problems without severe performance degradation. Thus, they are not as versatile as
suffix trees. Secondly, direct construction of these data structures is usually slower
than suffix tree construction.

4) Constructing suffix trees in parallel. This approach uses the
idea of processing sub-trees independently. Once all the sub-trees have been con-
structed it is possible to merge them together to form a complete suffix tree. We
call this the sub-tree idea.

In this paper, we are using a PC cluster to parallelize suffix tree construction. A
similar approach has been previously used in [3] and [2]. Unfortunately, [3] only gives
some actual experiments on a binary alphabet, which is not relevant in practice; [2] con-
structs suffix trees not in a cluster, but a SMP machine with 4 CPUs and large memory.
The main contributions of this paper are as follows:

1) Presentation of a data structure with the corresponding
O(n)-time construction method. The data structure is called common
prefix suffix tree (CPST). All suffixes in a CPST share a common prefix. A stan-
dard suffix tree can be divided into a number of CPSTs. Each CPST can be tackled
independently by one node in a parallel environment. We present an algorithm that
permits a linear time construction of CPSTs.

2) Implementing the proposed method efficiently on a PC
cluster. The major difficulty of constructing a large suffix tree inside a cluster
arises from the need to access the whole input sequence while constructing CPSTs.
Our solution is to set aside several data-servers which hold the whole sequence.
Processes constructing CPSTs then can access the sequence through communicat-
ing with these data-servers.

The rest of the paper is organized as follows. In Section 2, we provide the pre-
liminaries of suffix trees. In Section 3, we give the description of the CPST and the
algorithm for linear time construction. The parallel implementation on a PC cluster is
described and evaluated in Section 4. Finally, Section 5 concludes our paper and with
an outlook to further research.

2 Preliminaries

A suffix tree for a string S of length L is a rooted directed tree with exactly L leaves
numbered 1 to L. For any leaf i, the concatenation of the edge labels on the path from
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the root to the leaf exactly spells out the suffix of S that starts from location i. Assume
xs is a string over an alphabet Σ, where x ∈ Σ and s ∈ Σ∗. In a suffix tree, for
an internal node A with path-label (from the suffix tree root to the node) xs, there
exists another node B with path-label s, Then the pointer from B to A is called a
suffix link. The reason that suffix links are of interest is that they permit the suffix tree
construction in linear time [8]. The suffix tree with corresponding suffix links for the
string S = accattgaagcgttaccagttat$ is shown in Figure 1.

15

8

1

9

18

4

22 17

3 16
11

7

24

10

12 19

6

13

5

23

21

: Suffix link
i : The suffix starting from locationi of the input sequence

2 14

20

ag a

g a c c

t
c

t

g
t

t

$

c

a

g

t

c
a

g
t

g

g

a

$
c

t

a
t

c t

t $

g t g

a

c

t
a

t
c

ROOT
1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. The suffix tree of the sequence accattgaagcgttaccagttat$.

3 Constructing a Suffix Tree with CPSTs

3.1 CPST: Common Prefix Suffix Tree

A way of dividing the problem (constructing suffix trees) into smaller sub-problems is
to group the suffixes of a string first and then construct suffix trees for each suffix group.
All suffixes of a string can be grouped according to the prefixes of each suffix. We define
a common prefix suffix tree (CPST) of a string S to be a compact trie of a subset of the
suffixes of the string which start with a same prefix (shown in Definition 1).

Definition 1. Common prefix suffix tree (CPST): For a given string S
and a substring “compre” of S, a common prefix suffix tree, denoted as
CPST (S, compre), is the compact trie of all suffixes of S which start with compre.

Figure 2 shows four CPSTs for the string S = accattgaagcgttaccagttat$ and
the common prefixes a, c, g, and t, i.e. CPST (S, a), CPST (S, c), CPST (S, g),
and CPST (S, t). All CPSTs have fictitious connections to a root node. Considering
the case compre = g, all suffixes in S starting with the g are gaagcgttaccagttat$,
gcgttaccagttat$, gttaccagttat$, and gttat$. The trie of all these suffixes are presented
by he CPST (S, g).



1230 Chunxi Chen and Bertil Schmidt

8

15 1 9 18
4

17 3 16 2 11
7 1912

6 23

201310 14
21

5

: Compre suffix link
i : The suffix starting from locationi of the input sequence

a

g
t

c
a

c
g t

c t

a c
a

g
t g

t

g
a

c

tt
a

c
t

$g

g

t
a

c t
c

t

CPST(S,"a") CPST(S,"c") CPST(S,"g") CPST(S,"t")

a
c g

t

a12 12
1

1

2

3

Fig. 2. The CPSTs of the sequence accattgaagcgttaccagttat$. using compres: a, c, g, and t.

3.2 Constructing CPSTs in Linear Time

A CPST is actually a subtree of a standard suffix tree. Once all the CPSTs of a given
string have been constructed, the standard suffix tree of the string can be easily derived
by concatenating the roots of every CPST with the virtual root of the standard suffix
tree (shown in Figure 2).

Definition 2. Suffix chain: For each internal node of a suffix tree, there exists a
directed chain of suffix links starting from this node and ending at the root node. This
directed chain is called suffix chain.

For example in Figure 1, The suffix chain for internal node 3 is: 3→4→13→root.

Definition 3. Compre suffix link: Given are two internal nodes A and B inside
the same CPST. We define a compre suffix link from A to B, if A and B are part of the
same suffix chain in the standard suffix tree, where A is before B and no other internal
node of the CPST lies between A and B on this suffix chain. We also define a compre
suffix link from B to the root of the CPST, if no other node inside the CPST is part of the
suffix chain between B and the root of the standard suffix tree.

Let’s consider the suffix chain illustrated in Figure 3: F→A→C→D→B→E
→root. Node A and B belong to CPST2. We draw a compre suffix link from A to
B, since the part of suffix chain between A and B (A→C→D→B) doesn’t contain any
other nodes of CPST2. Additionally, there is a compre suffix link from B to the root of
CPST2.

In order to simplify the description, we use s[i, j] to denote the substring of S start-
ing at location i and ending at location j. len(compre) denotes the length of compre.
pathlabel(N) denotes the characters on the path from the root to the internal node N .
If suffix i starts with the prefix compre, we say suffix i is valid for CPST (S, compre).
The edge characters from node A to B is denoted as e(A, B).

Theorem 1. Given an internal node A of CPST(S, compre) with pathlabel(A) =
S[l1, l2]. Assume suffix l3 is the next valid suffix for CPST(S, compre) and l3 +
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Fig. 4. The illustration for Theorem 1.

len(compre) ≤ l2. Then there exists an internal node B with pathlabel(B) = S[l3 +
len(compre), l2] and a compre suffix link from A to B.

Proof. The proof has two parts.

1. Existence of B. Since A is an internal node, there exists at least two sub-
strings of S with pathlabel(A) = S[l1, l2] = S[l4, l5]. Hence, there are also two
substrings of S with S[l3 + len(compre), l2] = S[l6, l5]. Therefore, there must be
an internal node B with pathlabel(B) = S[l3 + len(compre), l2].

2. Existence of compre suffix link from A to B. We show there
exists a direct chain of suffix links from A to B by induction over n = l3 +
len(compre) − l1. The claim then follows since A and B are inside the same
CPST .

Basic Step: n = 1. Obviously, there is a directed suffix link from A to B.
Inductive Step: According to induction hypothesis, there is a directed
chain of suffix links from A to a node C with pathlabel(C) = S[l3 +
len(compre) − 1, l2]. Since there must also be a suffix link from C to B, it
can be concluded that there is a directed chain of suffix links from A to B.
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Theorem 2. Given an internal node C with parent node A inside CPST(S, compre).
Assume there is a suffix link from A to another internal node B. Then there exists a node
D below B with e(A, C) = e(B, D) and there is a compre suffix link form C to D.

Proof. Let pathlabel(A) = S[l1, l2] and pathlabel(C) = S[l1, l4]. Since there is a
compre suffix link from A to B, it holds pathlabel(B) = S[l3, l2], where l3 is the next
valid suffix for CPST (S, compre) after l1 and l3 < l2. With theorem 1 follows that it
exist an internal node D with pathlabel(D) = S[l3, l4] and a compre suffix link from
C to D. obviously, D is below B and e(A, C) = s[l2 + 1, l4] = e(B, D).

Our algorithm constructs a CPST through orderly inserting valid suffixes for the
CPST. In [8], the introduction of suffixlinks permits the usage of the skip/count trick
which makes the Ukkonen’s algorithm be in linear time. the compre suffix link in
CPSTs is the counterpart of suffixlinks in standard suffix trees according to theo-
rem 2. It can locate the next node in the CPST through using the skip/count trick instead
of traversing the CPST from its root. Based on the definitions and theorems above, the
algorithm of constructing CPST (S, compre) can be described as follows:

CPST construction algorithm:
Input: String S = α$, where α ∈ Σ∗, $ �∈ Σ, and Σ is a finite alphabet.

Common prefix compre ∈ Σ∗ with |compre| < |α|
Output: CPST (S, compre)

N = number of valid suffixes(S, compre);
IF (N == 0) RETURN (nil);
FOR i = 1 TO N BEGIN

ν(i) =starting position of the ith valid suffix in S;
END

current node = CPST root;
theorem2 flag node = current node.father.compre suffix link;
FOR i = 1 TO N BEGIN

IF ((current node == CPST root)||(theorem2 flag node == CPST root))

new nodes info = traversal(current node, ν(i), S);
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ELSE

new nodes info = skip count(theorem2 flag node, current node.edgelabels);
create new nodes(new nodes info)

create new CompreSuffixLink(new internal node, old internal node)

current node = new internal node;
theorem2 flag node = current node.father.compre suffix link;

END

RETURN (CPST root);

Theorem 3. For an input sequence S and a substring compre, CPST (S, compre)
can be constructed in linear time.

Proof. Our algorithm constructs a CPST (S, compre) through orderly inserting valid
suffixes for the CPST. Assume that the insertion of valid suffix Vi results in a new
internal node A with pathlabel(A) = S[Vi+len(compre), li]. The time complexity for
this assertion is O(li − Vi). For valid suffixes whose starting locations are in the range
[Vi, li] (such as suffixes Vi+1 and Vj), we can use the skip/count trick [8] to insert them
according to theorem 2. The time complexity for these insertions using the skip/count
strick are O(m), where m is the number of suffixes whose starting locations are in the
range [Vi, li]. Hence, the time complexity for inserting all valid suffixes whose starting
locations are in the range [Vi, li] is O(lli − Vi) + O(m). Obviously, it is linear to the
length of the range. The whole input string is composed by these ranges. Therefore, the
insertions of all valid suffixes can be accomplished in linear time.

4 Parallel Implementation and Performance Evaluation

4.1 Input DNA Sequence

The DNA sequence used in this paper is human chromosome NC 000001.4 which is
downloaded from [20]. The alphabet of actual DNA sequences consists of 16 characters,
in which a, c, g, and t represent the four bases of DNA and r, y, w, s, m, k, b, d, h,
and v represent undetermined base-pares. In the paper, we only consider the determined
bases a, c, g, and t. For example, the human chromosome NC 000001.4 extracted by
us is of length 222,827,884 bp.

4.2 Prefix Distribution in DNA Sequences

The purpose of presenting the new data structure called CPST is to divide a large-size
suffix tree into a number of smaller size CPSTs first and then each CPST can be pro-
cessed independently. This idea presumes that the suffix trees can be divided efficiently
using CPST. However, this might not be possible for systematically biased sequences.
Let’s consider a worst case. For a sequence S = aaaaaaaaaaaaaaaaaaaaaa, all the
suffixes of the sequence start with same prefix a. Thus, the idea of CPST is inefficient.

Fortunately, systematically biased sequences rarely occur in practice. The appear-
ance of the 4 symbols a, c, g, and g in actual DNA sequences is almost evenly dis-
tributed. This ensures that the number of DNA sequence suffixes starting with differ-
ent possible prefixes are not severely imbalanced. Here we take human chromosome
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NC 000001.4 length of 222,827,884 as an example. Table 1 shows that the number of
suffixes starting with different prefixes are well balanced. This means the suffix tree can
be divided efficiently into sub-problems using CPSTs.

Table 1. The number of suffixes of the human chromosome NC 000001.4 length of 222,827,884
(only consider a, c, g and t)which start with 1-letter and 2-letter prefixes.

compre Num of suffixes compre Num of suffixes compre Num of suffixes compre Num of suffixes
a 64875254 c 46493994 g 46483769 t 64974866

compre Num of suffixes compre Num of suffixes compre Num of suffixes compre Num of suffixes
aa 21191409 ac 11189673 ag 15878823 at 16615349
ca 16200299 cc 12132633 cg 2256627 ct 15904435
ga 13313713 gc 9838754 gg 12121539 gt 11209763
ta 14169833 tc 13332934 tg 16226780 tt 21245318

4.3 Parallelization Strategy

During the course of constructing CPSTs, the input string must reside in memory. This
means every process in the parallel environment must allocate enough memory to hold
the the input sequence first and then the remaindering memory can be allocated to con-
struct CPSTs. Obviously the efficiency is low when the input sequence is large. This is
the key reason some parallel implementations do not scale well.

If a cluster permits fast intra-cluster communication, it is possible that one or more
nodes hold the input string while other nodes efficiently access the string by intra-
cluster communication. We call this the sharing input string idea. Our implementation
uses one or more data-servers which hold the whole input sequence. The processes
constructing CPSTs (constructors) access the sequence through communication with
these data-servers.

In order to decrease the communication between dataservers and constructors,
we introduce the concept of smallnode and largenode. The communication between
dataservers and constructors consists of two parts: 1) the constructors need to access
the input string; and 2) the constructors need to get the edge labels of a node. The com-
munication in Case 1 has good efficiency since the constructors can get a whole block of
the substring a time. The highly frequent and low efficient communication comes from
the Case 2, because the number of the nodes is large and the overhead of every commu-
nication is high. We classify the nodes of a CPST according to the lengths of their edge
lables. The nodes whose edge-label lengths are larger than a criterion (nodesize) are
called largenodes, or else called smallnodes. If the edge labels of the smallnodes
are kept in their CPSTs, the access to these smallnodes doesn’t need communication.
Therefore, the communication in Case 2 will decrease.

4.4 Performance Evaluation

The cluster used in this paper consists of 10 nodes connected by a Gbit/s myrinet switch.
Each node comprises two 2.6GHz CPUs and 1 Gigabytes RAM. In our experiments, the
length of compre is set to 2 and therefore the number of CPSTs is 16. The nodesize is
set as 10. The number of constructors are 4 times that of dataservers. Figure 6 shows
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Fig. 6. The left part shows the runtimes for input strings with different lengths; The right part
shows speedups using the input string length of 50M.

that the construction time of our implementation is in a linear relationship to the length
of the input string. In addition, the speedup is almost linear.

5 Conclusion

The suffix tree is a key data structure for biological sequence analysis. However, con-
struction of a suffix tree for long DNA sequences is made challenging by high memory
overheads and poor memory locality. In this paper, we have introduced an efficient par-
allel algorithm for large-scale suffix tree construction using the CPST data structure. We
have shown how a standard suffix tree can be divided into a number of CPSTs. Each
CPST can then be processed independently by one cluster node. Our algorithm permits
linear-time construction of CPSTs. In order to reduce space while constructing CPSTs
inside a cluster, we use one or more data-servers which hold the whole sequence inside
the cluster. Constructors access the input sequence through communicating with these
data-servers. Our implementation can achieve linear space for a human chromosome
DNA sequence.
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13. J. Kärkkäinen and E. Ukkonen. “Sparse Suffix Tree”. COCOON’96, LNCS1090, Hongkong,
1996.

14. S. Kurtz. “Reducing Space Requirement of Suffix Trees”. Software Practice and Experience,
29(13):1149–1171, 1999.

15. S. Kurtz and C. Schleiermacher. “REPuter: Fast Computation of Maximal Repeats in Com-
plete Genomes.” Bioinformatics, 15(5):426-427, 1999.

16. U. Manber and E.W. Myers, “Sufix Arrays: A New Method for On-line String Searches”,
SIAM Journal on Computing, 22(5), 935-948, 1993.

17. C. Meek, J. M. Patel, and S. Kasetty. “OASIS: An Online and Accurate Technique for Local-
alignment Searches on Biological Sequences.” In VLDB, 2003.

18. G. Navarro, R. Baeza-Yates, and J. Tariho. “Indexing Methods for Approximate String
Matching.” IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

19. S. Tata, R.A. Hankins, J.M. Patel. “Practical Sufix Tree Construction.” in proceedings of the
30th VLDB Conference, Toronto, 2004.

20. The Growth of GenBank, NCBI, 2004. http://www.ncbi.nlm.nih.gov/genbank/
21. MPICH project: http://www-unix.mcs.anl.gov/mpi/mpich/


	Parallel Construction of Large Suffix Trees on a PC Cluster
	1 Introduction
	2 Preliminaries
	3 Constructing a Suffix Tree with CPSTs
	3.1 CPST: Common Prefix Suffix Tree
	3.2 Constructing CPSTs in Linear Time

	4 Parallel Implementation and Performance Evaluation
	4.1 Input DNA Sequence
	4.2 Prefix Distribution in DNA Sequences
	4.3 Parallelization Strategy
	4.4 Performance Evaluation

	5 Conclusion
	References




