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Abstract. Computational resource brokering on the Grid is the pro-
cess of discovering what systems are capable of running a job, obtaining
estimates for when that job may run and how much it will cost, and sub-
mitting the job to the system that best meets the users’ requirements.
This paper identifies how resource brokers differ from superschedulers,
and describes a resource brokering architecture which is adapted to the
emergent structure of the large-scale Grid. We outline the architecture
of the UNICORE resource broker which is the basis of our prototype
implementation, and discusses both how the existing UNICORE archi-
tecture is relevant to the wider brokering picture and what will be done
in the future to bring them into closer alignment.

1 Introduction

If one examines currently accepted informal definitions of Grid computing (e.g.
[1]) it is clear that the Grid approach to distributed computing does not allow
us to make any assumptions about uniform policies for the management of and
access to the resources provided by participation in the Grid. This potentially
makes Grids very hard to use and a great deal of effort has been devoted to
developing “middleware” that can hide this complexity from the users of the
Grid. One important task of this middleware is to locate resources on the Grid
for the purposes of performing some computational task. This is usually referred
to as resource brokering and it usually also includes obtaining some form of
quality-of-service (QoS) offer from those resources, so that different offers from
providers may be distinguished.

This is a separate problem from the management and scheduling of tasks on
Grid resources, which is referred to as “super-scheduling” since the Grid-wide
scheduler may need to coordinate local scheduling systems given the potential
existence of different management regimes controlling the resources of the Grid.
Note that this condition makes Grid scheduling a different problem to scheduling
on hierarchical clusters controlled by a uniform resource management system.

In some current resource broker implementations, e.g. in the EU DataGrid[2]
and in NorduGrid[3], these two operations are merged so that the process of
finding where a job can run is also the process of reserving some resources for
that job. It is known that the super-scheduling problem is hard to scale especially
when the local schedulers may be running different scheduling systems. The few
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super-schedulers that do exist (e.g. [4]) only work with certain batch or resource
management systems, thus the problem is not generally solved in practice. Thus
if a new site wishes to join in a larger Grid, it may have to consider changing
its scheduling system and software, this breaks the autonomy of local site policy
that is regarded as a key distinguishing feature of the Grid.

In this paper we argue that the resource broker problem is inherently easier
to scale and present an architecture for brokering that follows natural hierarchies
created when different sites or organisations which have a uniform inter-site pol-
icy join to form a Virtual Organisation (VO) by pooling their resources. We
distinguish two types of scaling; scaling in magnitude allowing very large num-
bers of sites and resources to be organised as a Grid, and scaling in complexity
allowing complex applications to federate across sites deploying different mid-
dleware and differing site policy configurations. We present preliminary results
showing how our brokering architecture enables scaling in complexity and gener-
alise from this to a proposed architecture that can support both types of scaling.

The paper is structured as follows: in Sect. 2 we examine in more detail cur-
rent approaches to the scheduling and brokering problems. In Sect. 3 we present
our VO-based approach to brokering and in Sect. 4 we present our reasons for
choosing the UNICORE middleware as the basis for implementation. In Sect. 5
we present the detail of a prototype implementation and how this allows interop-
erability with other middleware systems such as Globus Toolkit versions 2 and
3 (GT2 and GT3). We also discuss how the lessons learnt have enabled a gen-
eralisation of the prototype implementation to meet the full requirements of a
VO-based architecture. In Sect. 6 we present preliminary conclusions and discuss
how the development of standards based around the Open Grid Services Archi-
tecture will enable the brokering architecture to be developed for a much wider
range of middleware systems compliant with the emerging Open Grid Services
Architecture (OGSA).

2 Existing Resource Brokers and Superschedulers

There are currently several different approaches to Grid resource brokering. Two
major but similar approaches are used by the brokers developed in the DataGrid
project and the NorduGrid project cited above, which are both arranged as
front-ends to the job-submission system through which all jobs are required to
go. In the DataGrid broker, there is a single central broker through which all
submissions are made; this allows it to carry out not just brokering but also
scheduling across the Grid which it controls, but it pays for this by being not
scalable. The NorduGrid broker by contrast puts the brokering directly in the
client toolkit; this solution is more scalable, but requires revealing large amounts
of information to every client, which not something that commercial resource
providers may wish to do (the precise status of a site might be commercially
sensitive.) The problem with both of these approaches is that they both require
collecting of large amounts of information about the state of the Grid in some
centralized location, necessitating an extensive Grid monitoring architecture.
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This approach does not scale well because of the amount of information that
needs to be transferred and processed since a centralized broker must know the
state of the system with a fair degree of accuracy or all estimates will be wrong,
and a distributed broker needs to collect a large amount of information on each
client request.

While both of the above two brokers are also scheduling agents, neither are
as far advanced as the NaReGI[5] super-scheduler. That works through the in-
troduction of a privileged module that can rewrite jobs into a form that can be
scheduled more efficiently at individual resources. However, this approach also
does not scale administratively because it requires the exposure of substantial
amounts of information (much of which might be commercially sensitive) about
resources on the Grid to the scheduler potentially within a different administra-
tive domain. This approach can be extended with the use of an inter-scheduler
negotiation protocol (e.g. based on ContractNet[6] or WS-Agreement[7]) but this
is still difficult to scale as the system granularity changes.

The other approach in use is based on the UNICORE[8] resource brokering
framework[9]). This assumes that the underlying systems used by the sites or
organisations in the VO are each in control of local scheduling (e.g. through the
use of a batch queue) and is oriented towards discovery of resources and the
presentation of offers for a particular level of quality-of-service made by those
resources. In particular, the resources may make multiple offers for a particular
job and those offers do not have to precisely satisfy the requirements of the job
in order to be considered; the resource making the offer may use knowledge of
the application’s problem-domain to create an offer based on application-specific
scaling factors. The other key feature of the existing UNICORE broker is that
the architecture is composable, with brokering agents being able to ask other
brokering agents to work on their behalf.

3 Conceptual Basis for VO-Based Brokering

In [1] Grids are envisaged as deriving from resource sharing in Virtual Orga-
nizations. This term has no meaning unless the VO has some common policy
on resource sharing, however this may be at a general level and scheduling, for
example, may be a task carried out differently in different parts of the VO. If we
define the VO concept recursively, i.e. VOs can be composed of sub-VOs, then
we get a policy hierarchy. If we go sufficiently far down such VO trees we will
eventually come to groupings of resource that can be considered to have uniform
systems with respect to resource allocation and management (in the worst case
this might be individual machines but economies of scale generally call for some
grouping).

An actual physical computing site or organisation may have multiple sets of
resources managed in substantially different ways, it can be easier to represent
the site as multiple VOs, each with its own policy domain (though perhaps with
a separate VO on top of them representing the federation of those resources
within the overall site). Sites come together in organisations and organisations
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in multi-institutional collaborations but in our abstraction this is all within the
recursive definition of VOs. Note that resources are not necessarily machines, but
are instead a virtualization of machines. This means that a resource may also be
a cluster of machines, or that a single machine may host multiple resources (much
as websites may be hosted by pools of webservers, or single HTTP daemons may
host multiple websites; combinations of both are also possible).

Because we have defined the structure of VOs recursively, we also define the
structure of the brokering system for the Grid recursively. By arranging for the
broker for a VO to operate through delegation of requests sent to it to the brokers
in the sub-VOs, there is already a much substantial degree of natural scalability.
Another degree of scalability can be added by loosening up the binding between
a VO and its broker, so that the brokering service for a VO is actually chosen
from a pool of suitable brokers.

Superschedulers are integrated into this picture by placing them at (or near)
the leaves of the VO tree. This allows them to operate in highly homogeneous
environment and avoid the inter-domain coupling problems found in higher-level
superschedulers. It is easier to scale brokers hierarchically across administrative
domain boundaries, since they do not undertake any management of resources
but only make enquiries about such availability. Thus the abstract function ge-
tResourceInformation can be implemented without any inter-site cooperation
but scheduleTask cannot. This is not the case, however, in the hierarchical de-
sign of the Meta Directory System v2 (MDS-2) used by Globus middleware[10]
since the indexing process requires that information publishing outside the sub-
domains of the VO and combined at the higher levels.

4 Choice of Middleware to Build a Hierarchical Broker

To build a Grid resource broker based on VO boundaries we need support for
the hierarchical structure of VOs in the middleware which provides access to the
resources of the Grid. We found support for such abstractions in the UNICORE
middleware. The Globus MDS-2 information provision has a hierarchical struc-
ture but this abstraction is not maintained throughout the middleware (in job
submission language for example). This means that when UNICORE is installed
we simultaneously gain information about resources that covers all possible task
submission requests (since the middleware cannot function without this). With
Globus the information provision is done separately and although the adoption
of a common information schema such as the GLUE schema[11] goes some way
towards providing a more information-rich Grid, it still lacks the link between
resource information gathering and task submission[12].

The UNICORE[8] architecture is based around the concepts of Usites, Vsites
and Abstract Job Objects (AJOs). Usites are virtualizations of resource provider
sites that will normally have a shared set of policies (originally focusing on fire-
wall and certificate authority management), Vsites are virtualizations of services
providing computational resources, and AJOs are document-oriented abstrac-
tions of computational jobs that are converted by Vsites into concrete forms
(through a process termed “Incarnation”) before execution (see Fig. 1). The
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Fig. 1. The architecture of a UNICORE grid

UNICORE brokering model (developed in the EUROGRID project[9]) builds
on top of the general architecture by allowing each Vsite to host a brokering ser-
vice for that Vsite. This works by taking an AJO stripped of large components
(like attached files) and testing to see if the resources it requests are available at
the Vsite. When the resources are available, the broker then obtains an estimate
for what level of quality-of-service is available for the job (obtained from the
low-level job system, e.g. from a batch queue length estimator or by examin-
ing the load of the machine to get an estimate for likely processor and memory
contention1) and then attaches it to a ticket that is handed back to the calling
agent along with the QoS offer. The calling agent can then claim the offered QoS
by attaching the ticket to the real job submission. Another key feature of the
EUROGRID broker was support for delegation of a brokering request from one
broker to another, which allowed for the deployment of a dummy Vsite which
could provide brokering for a whole group of resources by delegating incoming
requests to the leaf-Vsite brokers (see Fig. 2). Finally, it supports a plug-in in-
terface which allows the broker to be enhanced with knowledge of a particular
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Fig. 2. The architecture of the EUROGRID broker

1 Note that different kinds of systems require different kinds of QoS estimators. Batch
processing systems give total control of processors to their jobs and hence the loading
is irrelevant on such resources, whereas direct execution clusters will start running
every job virtually immediately but will suffer from any resource contention present.
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application domain. This allows for the expression of job requirements in terms
of domain-specific measures (e.g. the size of Grid used in a weather simulation)
and the application of performance models based on a detailed study of the ac-
tual applications in use, it being far easier to provide the user with an interface
that generates such input metadata than it is to arrange for all agents on the
Grid to make accurate physical resource requirement estimates.

The GRIP project[13] extended this model by allowing a Vsite to be im-
plemented not just using the basic UNICORE mechanisms, but also on top of
Globus[14]. This leveraged the fact that the AJO is abstract to allow the com-
plete replacement of the job running system with another one with an entirely
different job description language. The resource broker was also extended in
GRIP to work by using Globus information services (in GT2 and GT3).

The key features of the UNICORE architecture that supported the EURO-
GRID/GRIP broker were that the conceptual models of both the computational
resources and the jobs running on them were abstract. By brokering jobs before
they are incarnated, it is much easier to find more resources capable of running
the job on a heterogeneous Grid, and the abstract resource model allows the
broker to work with offers from a much wider range of resources.

5 Design and Implementation

5.1 Prototype Implementation

The EUROGRID/GRIP resource broker is implemented as a plug-in module to
the UNICORE NJS2 and consists internally of a multi-layered architecture (see
Fig. 3). The outermost layer handles the communication, security and delegation
model as well as providing utility and configuration services. Inside this is is the
main logic module — which uses a runtime-pluggable architecture to support
application-specific brokering — and the local basic brokering engine, which acts
as an interface to the underlying concrete system. The GRIP broker extends the
EUROGRID broker in having additional local basic brokering implementations,

Globus2ResChk Globus3ResChkUnicoreResChk

LocalResourceChecker ResourceBroker

AbstractBroker

ExpertBroker

MDSTranslator OntologicalTranslator

Translator

GLUE Ontology
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usesuses

loads
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Fig. 3. The internal architecture of the EUROGRID/GRIP broker

2 Network Job Supervisor, a hosting environment for UNICORE Vsites.
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one that integrates with a GT2-based low-level Grid, and one that integrates with
a GT3-based Grid. These local broker interfaces handle the task of brokering on
a Globus-based Grid by translating from resources as requested by a UNICORE
AJO to an MDS-2 or Index Service query. Each translation is performed by a
pluggable translation engine; the translation to MDS-2 queries is ad-hoc but the
translation to an Index Service query is described using an ontology developed
using PCPACK[15], an ontology capture tool, which allows for much simpler
maintenance of the ontology going forward in time.

To demonstrate the viability of the EUROGRID/GRIP resource broker, it
has been used to broker the Deutcher Wetterdienst coupled weather simulation
model across a heterogeneous grid consisting of a mixture of UNICORE-based
and Globus-based nodes. The global part of the weather model was hosted on
a UNICORE-based grid system, and the relocatable local weather model was
transparently brokered across a Globus-based grid, with the results being re-
flected back to a UNICORE-based front end client for display to the user. This
demonstrated both complexity of application (the primary resources over which
the application was brokered were described in terms of the weather model,
with translation to suitable underlying resource terms done transparently by
the application-specific broker) and complexity of underlying infrastructure.

5.2 Lessons Learnt and Generalisation of the Architecture

Work on the prototype has identified three requirements to lift this infrastructure
to the ideal of VO-based brokering architecture described in Sect. 3:

– The resource broker must be extended so that it can broker for more than one
Vsite simultaneously without having to delegate to individual leaf brokers.
This significantly reduces the degree of fan-out in a brokering request. This
means that the tickets issued by the broker must be capable of inspection by
services other than the issuer, though there is no need for anything outside
the site that hosts such a broker to be able to carry out such an inspection.

– It must be possible to place two or more brokers in parallel and get sensible
answers out of each even with simultaneous requests. This means that where
a broker reserves resources for the use of a job, it must be able to make sure
that the other brokers in parallel do not collide with it. This might be done
by using a database to provide serialization and locking. Note that this is
not necessary if no actual reservation is made for the job, such as might be
the case if the brokers are just reporting estimates of how long it will take
for the job to reach the head of the batch queue.

– It must be possible for an agent (whether a client or another broker) to find
out an instance of a resource broker for a site or other VO. This should be
done by associating a registry of some kind with the VO and placing the
references to all the VO’s broker instances within it. VOs that have more
than one broker may wish to split the load between the brokers by arranging
for different requests to the registry to return different instances (or in a
different order).
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Fig. 4. An overview of the multi-VO resource broker architecture

These three architectural changes, together with the delegation model de-
veloped in the EUROGRID broker (formalized by an Explicit Trust Delegation
model[16]), allow the development of a brokering infrastructure along VO lines
(see Fig. 4). This work is being undertaken in the UniGrids project[17]. Note
that the VO closest to the user should also be supplied with a policy description
(based on Condor ClassAds[18]) that allows it to choose between the offers col-
lected on behalf of the user. By combining that policy with any such VO-based
policy, it is possible to choose a suitable offer without any further intervention
from the user or instigating agent.

There are additional benefits to doing this. By moving the broker the higher
level, it becomes much more efficient to use systems like R-GMA[19] or NWS[20]
to estimate likely performance. The Usite level (i.e. the lowest level of VO) is
a good point to introduce superschedulers like that developed by NaReGI[5]
without sacrificing the simplicity of the wider brokering architecture outlined
above.

The final component of the UniGrids brokering architecture is a mechanism
for monitoring of submitted jobs and generation of Usage Records[21]. These
usage records would then be both stored in a resource usage service (such as the
one developed in the MCS project[22]) for future reference (e.g. invoicing the VO
at the end of the month). The usage records are also to be fed back at periodic
intervals at times when the brokers are likely to be otherwise lightly loaded.

Preliminary results indicate that the new architecture greatly increases both
the throughput scalability and the management scalability of the brokering sys-
tem. The key source of improvement in throughput is the reduction in the num-
ber of inter-service messages achieved through a broker being able to issue offers
on behalf of an entire site at once, and the improvement in managability comes
through the reduction of the number of different systems that need to be con-
figured to bring a brokered site into service and keep it operating.

6 Conclusion and Future Work

Two major changes will be required to bring the brokering architecture within
the OGSA framework. The first major change is the switch to using web-services
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based on WSRF[23] for the implementation and SOAP[24] for the transport
protocol. This will make comparatively little difference to the brokering system
because that is already highly service-oriented. We expect it to simplify the com-
munication model between the components significantly as the resource broker
does not require the transfer of large amounts of data, even for usage record
reconciliation. The advantage of going to a service-oriented model will be that
it will become much easier to integrate UNICORE with a more traditional web-
services workflow engine like BPEL[25] and so allowing more complex workflows
with multiple brokering stages (e.g. a long running job that is migrated between
available platforms at regular intervals, with the broker being used to select lo-
cation for job migration). It will also allow a wider range of clients written in
arbitrary programming languages to make use of the brokering facilities.

The second major change will be the adoption of JSDL[26] as a job descrip-
tion language instead of the AJO. Resource requests expressed in AJOs or JSDL
documents are largely compatible, both being abstract languages that can be ren-
dered more complete through incarnation, and both stating what resources will
be required for the job being run. JSDL is a standard language for job submis-
sion (reducing the complexity of the code to map onto non-UNICORE Grids)
which supports not just simple job running but also web-services invocations
and database queries. This allows the broker to be used in wider settings such
as load-balancing of a pool of SOAP engines or distribution of queries across a
federated database.

In the future, it will be possible to create a scheduler on top of the brokering
architecture outlined in this paper. This will take advantage of the fact that
the VO-based broker architecture will be able to offer both a good selection
of QoS offers and, through usage record monitoring, estimates of how accurate
those offers are and the likelihood of those offers being honoured. In this way,
the ultimate structure of the brokered scheduled Grid will probably consist of
schedulers that are very close to the top (where they take advantage of the way
that the brokering architecture smooths the appearance of the Grid) and the
bottom (where they can take advantage of the fine information available when
deciding how to match up jobs and particular resources) of the structure3 and
a brokering network in between the schedulers.
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