
An Investigation of Sharing Strategies
for Answer Set Solvers and SAT Solvers

Hung Viet Le and Enrico Pontelli

Department of Computer Science
New Mexico State University

{hle,epontell}@cs.nmsu.edu

Abstract. This paper describes a parallel engine for Answer Set solving, based
on exploitation of search parallelism. The work explores a range of alternative
strategies for work sharing, describing their implementations and comparing their
efficiency. These results indicate methodologies to combine sharing strategies and
select the most effective one depending on properties of the problem.

1 Introduction

In recent years, there has been a significant increase of interest towards the applica-
tion of logic-based technology—in particular, technology based on propositional and
SAT solving—in a variety of application domains. This renewed interest has also been
guided by the development of formal modeling and programming paradigms based
on these concepts, such as the widely used Answer Set Programming (ASP) [9]. ASP
builds on logic programming and answer set semantics [5], to provide a set-oriented
programming paradigm. In ASP and SAT, the problem is modeled using clauses of a
propositional theory, and solutions are represented by minimal or stable [5] models
of the theory. A significant push to these efforts comes from the development of effi-
cient implementations of ASP and SAT solvers. These implementations are practical
and scalable to real-life domains. The execution mechanisms employed by ASP are
analogous to those used in general SAT solving, and are based on highly optimized
and/or specialized versions of the Davis-Putnam procedure. In this work, we will focus
on a state-of-the-art ASP engine—i.e., an implementation of the SMODELS algorithms
[13]—though the proposed ideas are applicable to related systems.

In spite of the efficiency provided by existing systems, there are areas where ASP
and SAT solving provide elegant, compact, and highly declarative solutions, but whose
execution requirements are beyond the capabilities of existing systems. E.g., ASP is
widely used in planning in complex domains [7], but the high computational require-
ments limit the domains and goals that can be effectively addressed. Parallelism has
been identified as a natural avenue to further improve applicability of ASP and SAT
solving to real-world problems. Preliminary steps have been taken in the design of par-
allel ASP [4, 11] and SAT solvers [1, 2, 15].

The literature is rich of studies related to the design of parallel engines for traditional
logic programming (mostly Prolog) [6], theorem provers [2], and constraint solvers
[10]. Nevertheless, recent investigations [11] have highlighted that results from these

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 750–760, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 751

related areas are not directly transferable to ASP—e.g., task sharing techniques proved
optimal in the context of Prolog have provided suboptimal performances in ASP.

In this paper, we are interested in the development of techniques to exploit paral-
lelism from ASP at the search level (a.k.a. or-parallelism) and in the context of dis-
tributed search strategies [2]. Parallelism at the search level implies the presence of
multiple processes (search agents) that search in parallel the solution space of the prob-
lem; in ASP and SAT, this corresponds to the concurrent construction of distinct models
of the propositional theory, where each agent explores different truth assignments to
the logical variables of the theory. Theoretical research in the area of search parallelism
[6, 12] underlined that dynamic distribution of work is vital to achieve adequate paral-
lel performance, and two components of the execution model have the greatest impact:
the sharing strategy and the scheduling strategy. Scheduling determines the policy to
be used to select tasks to be exchanged during execution, while the sharing strategy
determines how the exchange of tasks takes place. Our focus is on the latter.

The contribution of this paper is the design of the first complete parallel ASP system
(supporting the complete SMODELS language) on Beowulfs. Our focus is on investigat-
ing the impact of different sharing strategies. We explore a variety of alternatives, some
adaptations to ASP of known methodologies and some novel, and study their behav-
ior on a representative set of benchmarks. The results suggest that flexible dynamic
selection of sharing strategies is vital to guarantee high parallel performance.

2 A Parallel Engine for ASP

Sequential Execution Model: The objective of a computation is, given a propositional
theory (extended Horn clauses in the case of ASP), to determine one or more minimal
models of the theory. For ASP, we are seeking a special set of minimal models, called
stable models [5]. The execution is a fixpoint computation which alternates two phases:
boolean constraint propagation and atom splitting [2]. During constraint propagation,
clauses in the theory are used to extend a partial model, adding to the model those
atoms whose truth value is uniquely determined by the theory (w.r.t. the partial model).
Whenever constraint propagation is not possible, the system performs atom splitting, by
selecting an unknown atom and “guessing” its truth value; this corresponds to the cre-
ation of a choice-point, since backtracking needs to explore both alternative truth values
for such atom. Heuristic strategies (based on estimating the size of the subtrees) are em-
ployed in the selection of the atom during splitting, to guarantee effective propagation.
Because of the non-determinism of atom splitting, the computation can be visualized as
a search tree, where the nodes correspond to the choice-points created by splitting.

Organization of the Parallel Computation: Forcing an atom into the partial model,
via atom splitting, will create two branches of the search tree, corresponding to the two
roles of the atom (true and false). The system needs to completely traverse both sides of
this computation subtree separately, and this is the core of the parallel search process—
i.e., assign distinct branches to different search agents. The left (right) branch of each
node corresponds to setting up the atom’s value to true (false). In search parallelism,
the two branches may be explored concurrently by separate agents.



752 Hung Viet Le and Enrico Pontelli

The initial steps of the parallel computations are performed following a static par-
tition of work. A divide and conquer scheme is applied to the first ≈ lg2 n levels of
the search tree (n is the number of agents). Initially all agents independently perform
the initial boolean propagation; at the first splitting, processors are partitioned along
the two branches—distribution of processors between the two branches is based on
the estimated size of the two subtrees (using the same heuristic strategy of [13]). The
process continues until individual agents are assigned to distinct subtrees. This pro-
cess does not require inter-process communication and resembles the guiding path
generation process of PSATO [15]. After this initial setting, the system switches to a
fully dynamic distributed scheduling strategy, where an idle agent secures new tasks by
performing a sharing operation with another agent. We consider scheduling strategies
that are receiver-initiated (i.e., idle agents initiate scheduling). The dynamic scheduler
(briefly described in Sect. 3.3) is expected to determine a pair 〈P ,N〉, where P is the
active agent from where tasks should be acquired (work-sender), and N is the node
(target node) in the tree containing the task to be exchanged. Once the pair 〈P ,N〉 has
been determined, a sharing operations has to be performed between the idle agent and
P . We will refer to the idle agent as the work-receiver. An idle agent which is searching
for new tasks is called work-checker. The location of the idle agent in the search tree is
called start node. A node with an unexplored alternative is said to be open.

Essential Data Structures: The basic data structures employed extend the traditional
design used for linear time computation of declarative closures. Inter-connected objects
are used to represent each rule and each atom. The computation is based on the use
of a stack, which maintains a representation of the partially constructed stable model
(as references to atoms). If an atom is determined to be true/false, it is pushed on the
stack along with its truth value. An array (history record) has been introduced to record
the choice-points created during the construction of the current branch of the search
tree—i.e., it provides a compact representation of the branch in the search tree built
by the agent. During the execution, search agents operate on the leaves of the search
tree; to assist the sharing operations, each search agent maintains an array (relative
positions) recording the nearest common ancestor (nca) nodes between the agent’s leaf
and the leaf of any other agent. In a distributed setting, determination of the relative
positions require inter-process communication. In this work, the updates are lazily done
via broadcast messages during the sharing operations.

3 Parallel Work Sharing Strategies

The objective of the sharing operation is to transfer tasks between two agents. In order
to allow an agent to restart its computation from a different node, it is necessary to
reconstruct the correct execution state; i.e., if the agent moves to node N , then it will
have to instantiate its data structures to reflect the partial model associated to node N .
[6] surveys over 20 different schemes to address the sharing problem for Prolog.

The formal analysis of search parallelism [12] recognized methods based on con-
stant-time access to the partial model and constant-time alternative selection to be op-
timal. This restricts our choice to sharing methods that maintain the same model and



An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 753

program representation as in sequential models, and that reconstruct the necessary seg-
ments of the computation only when sharing takes place. We can recognize two key
approaches: copying—where the necessary segments of computation are copied from
the work-sender to the work-receiver—and recomputing—where the work-receiver re-
builds the segments of computation with minimal information from the work-sender.
Copying requires significant communication but it minimizes the amount of work done
by the receiver, while recomputing minimizes communication but requires high com-
putation effort by the receiver. Copying has been widely adopted in parallel logic pro-
gramming and considered as the most effective scheme [6]. We explore a solution where
copying and recomputation can alternate depending on the application.

3.1 Recomputation-Based Methods

In the recomputation-based methods, the idle agent acquires work by recreating the
state of computation existing at the time the node where a new alternative is available
was created. In its most direct version, the content of the data structures representing
the clauses and atoms and the content of the stack (representing the partial model) are
recomputed, starting either from the root of the search tree or from the nca node of the
target node and the start node, and ending in the target node [6]. The work-sender only
needs to send a part of its history record, used to guide the work-receiver in making the
correct choices during recomputation (i.e., what alternative to take in each choice-point
created during recomputation). We introduce 4 recomputation methods, which differ in
the amount of recomputation performed and in the way agents move in the search tree.

Method 1: Recomputation with Backtracking (ReBack). The key requirement in this
method is that each agent maintains its relative positions in the search tree w.r.t. the
other agents. The work-receiver acquires work by first backtracking to the nca node of
the start node and the target node (a.k.a. the relative position), and then initiating the
recomputation operation from there. The stack and the other data structures, including
the rule and atom objects, are reconstructed from the relative positions. The path that
runs from the nca node to the target node in the search tree is called the connection.
The description of the connection is present in the work-sender—it is a segment of its
history record (Sect. 2). The connection is exchanged between the two agents, and used
by the work-receiver to perform recomputation. Both the work-receiver and the work-
sender will also mark the target node as explored (to avoid duplication of work). The
relative positions between agents also need to be updated during the sharing operation.
When the receiver has completed the recomputation process, it will replace its relative
positions array with a copy of the relative positions of the work-sender. Meanwhile, the
work-sender broadcasts the new position of the work-receiver to all agents, allowing
them to update their own relative positions arrays (w.r.t. the work-receiver).

The lack of guarantee regarding the order of arrival of messages sent by different
agents might create situations where agents incorrectly update their relative positions.
The overall effect is that the system may be unable to schedule work to idle agents. We
refer to this problem as the mismatch situation.

Method 2: Recomputation by Backtracking-Compare History (ReBackHis). In this
method, instead of maintaining the relative positions between each pair of agents, the



754 Hung Viet Le and Enrico Pontelli

agents explicitly exchange their history records at the beginning of the sharing opera-
tion, determining at such moment the nca node in the search tree w.r.t. their positions.
Whenever two agents exchange work, the work-receiver sends its own history records
to the work-sender. Having compared to the received list, the work-sender figures out
and sends back to the work-receiver the nca node and the connection. The main advan-
tage of this alternative is that the work exchange is done locally, between two agents
without notifying anyone else. On the other hand, the agents do not know their rela-
tive positions, and they may attempt to seek work from agents that have a nca node
close to the root (i.e., agents that are “far” from the receiver). This may cause longer
backtrack/recomputation phases, but we avoid the messages to maintain the relative
positions between agents, reducing traffic and avoiding the mismatch situation.

Method 3: Recomputation Reset (ReReset). In the recomputation reset scheme, the
initial backtracking to the nca node between the positions of the two agents is avoided.
The backtracking step is replaced by a recomputation that starts always from the root
of the search tree. Such scheme requires each agent to store its state at the root of the
tree—i.e., the result of the first constraint propagation—and the ability to make an agent
efficiently switch back to such initial state. This operation is called Reset, and it can be
accomplished by (a) emptying the stack; (b) over-writing the rule and atom objects with
a permanently saved copy of their state at the root node; (c) removing all the atoms
present in the various temporary queues used by the boolean constraint propagation
procedures. The relative positions between the agents are no longer necessary, and the
only communication required is the connection from the root to the target node (which
might be significantly bigger than the connection in ReBackHis).

Method 4: Recomputation Reset Split (ReResetSplit). In this method, instead of shar-
ing the highest node which contains alternatives, the sender sends to the work-receiver
the complete path from the root to the lowest node in its branch. All the nodes with un-
explored alternatives along the branch are distributed between the two agents according
to an interleaved scheme—i.e., the first open node is kept by the work-receiver, the
sender keeps the second one, the work-receiver keeps the third, etc. This scheme bears
some similarities to the stack splitting scheme used in some parallel Prolog systems
[14], where the partitioning is made in contiguous blocks of choice-points; our scheme
makes use of an interleaved distribution—impractical in Prolog (due to the need of
handling side-effects) but effective in ASP, and expected to give rise to more balanced
distributions—since it is unpredictable whether the “richer” nodes are in the upper or
lower levels of the search tree. Compared to the other recomputation methods, ReRe-
setSplit requires larger amount of data exchanged between agents (the complete history
record of the work-sender), and the sender is also required to travel more to get to the
new computation state. However, the agents can share in a single interaction a large
number of open nodes, quickly accessible via local backtracking.

3.2 Copy-Based Methods

In copying, instead of reconstructing the computation state, the idle agent acquires work
by copying the data structures stored in the work-sender agent. In most of the cases, the
data to be transfered include the components of the rule and atom objects that are part of



An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 755

the computation state (e.g., the truth value of the atoms, the counters in the objects used
to keep track of the state of the clause), the stack, the history record, and the relative
positions of the agent. In order to facilitate the copy process, we have separated the rule
objects in two parts—a static part (set during the initialization phase and never copied)
and a dynamic part (modified during the remainder of the execution). The dynamic
parts are collected in arrays to facilitate copying. Also, changes to atom objects are
trailed, and only the modifications are copied. Observe that, while in recomputation
the execution develops from the root of the tree towards the open node, in copying the
computation restarts from the open node and moves up via backtracking.

Method 5: Incremental Copying Split-Maintain the Relative Positions (IncCopyS-
plit). In this method, we exploit the basic copying mechanism, enriched with the idea
of incrementality—incrementality derives from the fact that the idle worker has already
traversed the part of the branch in the search tree from the root node to the nca node,
thus, there is no need to copy it. Like in the case of recomputation by backtracking,
each agent maintains its relative positions with the other agents. The work-receiver
backtracks to the nca node, while the work-sender transfers the part of the stack from
the nca node to the selected open node. The set of clauses and atoms with up-to-date
parameters and links are included in this copying operation. The work-receiver unpacks
the data set and updates its data structures. The update process is performed by replac-
ing the dynamic parts of rules and atoms with the received ones and adding the content
of the received stack to the local stack. Similarly to the ReBack case, all other agents
have to be notified (via broadcast) of the new position of work-receiver in the search
tree. Concurrently to the exchange of data, the agents perform an interleaved partition
of the open choice-points as described in the method ReResetSplit.

Method 6: Incremental Copying Split-Compare History (IncCopySplitHis). This
method is simpler than IncCopySplit. The relative positions between the agents, em-
ployed to support the incremental copying behavior, are no longer required. Analo-
gously to the ReBackHis scheme, the agents exchange their history records to find out
the nca node. As soon as such node has been determined, the sharing process proceeds
exactly as in the IncCopySplit scheme. The only additional difference is that the broad-
cast messages to notify the change of position of the work-receive agents are not re-
quired. As for the ReBackHis scheme, scheduling has to be performed blindly, without
knowledge of the relative positions of the agents, but the message traffic is dramatically
reduced and the mismatch situations are avoided.

Method 7: Copying All Split (CopyAll). This method is the simplest between our
copying approaches. Whenever a sharing operation is invoked, the sender transfers
the complete database of up-to-date rules and atoms (dynamic parts only), along with
the complete stack. The receiver empties its stack and it installs the received data.
Compared to the IncCopySplitHis scheme, the CopyAll allows the same type of blind
scheduling (with the same advantage in terms of reduced traffic), but it does not require
the initial exchange of history records (since knowledge of the nca node is not required).
On the other hand, the method requires the copying of the complete stack, which might
contain a substantially larger amount of data than in the incremental case.



756 Hung Viet Le and Enrico Pontelli

3.3 Further Implementation Details – Scheduling and Termination

The irregular structure of ASP search trees requires the use of a dynamic distributed
scheduling scheme [6, 14]. Each agent alternates between execution phases and schedul-
ing phases. The lack of a central scheduler leads to a situation in which agents do not
have knowledge about the location and status of other agents in the tree. Consequently,
they need to exchange information (e.g., the relative positions broadcasts) to ensure a
good load balancing. The scheduler addresses two aspects: (i) establishes policies for
exchange of scheduling information; (ii) determines global termination (using a token-
ring termination detection). All communications rely on a time-out mechanism, where
unanswered task requests are discarded by the idle agent—this has shown large im-
provements in performance w.r.t. schemes requiring acknowledgments.

A

A

A

A

A

A

A

B
B

B

B

B

B

B

C

C

C

C

C

C

C

D
D

D

D

D

D

D

E

E

E

E
E

E

E

F
F

F

F

F

F
F

H

H

H

H

H

H

H

0 2 4 6 8 10 12
Number of Agents

0

2

4

6

8

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

A

A

A

A

A

A

A

B

B

B

B B
B B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F
F

F

H

H

H

H

H

H
H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

Fig. 1. Puzzle (left) and Queens Benchmarks

The Searching Agent: Whenever an agent has completely exploited all the alternatives
locally available in its branch, it starts requesting work. The work requests are arranged
according to a dynamic ordering of agents (stored in a priority array). By using a good
ordering, a searching agent can reduce the volume of data in copying or recomputation.
Depending on the individual approach, there are alternative strategies to compute the
priority array. E.g., the methods that keep the relative positions of agents, sort the pri-
ority array based on the level of the nca nodes. The other methods start with a random
order and re-sort the array based on the observed communications (e.g., a late message
indicating tasks availability will increase the priority of that agent). Agents are con-
tacted in the order they appear in the priority array. Time-outs lead to generation of a
new request sent to the next agent in the array. The agent enters the idle state when all
its attempts to get work failed. If the idle agent receives the white token, it will forward
the token to the next agent in the ring. If it receives a black token, then it will know that
agents are still working, and it will revert to work-search and scheduling.

4 Experimental Results

The system has been implemented on a Beowulf cluster (Xeon 1.7GHz, 1GB RAM,
Linux, and Myrinet), using Java+MPIJava. The parallel system has an average over-
head of less than 10% over the sequential solver (the SMODELS [13]). We tested the



An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 757

A

A

A

A

A

A

A

B

B

B

B

B

B
B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetSplitC C
CopyAllD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

Vertex (i)

A

A

A

A
A

A

A

B

B

B

B B

B
B

C

C

C

C

C

C
C

D

D

D

D
D

D
D

E

E

E

E

E

E
E

F

F
F

F
F

F
F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

10

Sp
ee

du
p

Seating (ii)

A

A

A

A

A

A

A

B

B

B

B

B

B

B

C
C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

PigeonHole (iii)

A

A
A

A
A A A

B

B

B
B

B

B B

C

C

C C

C C

C

D

D
D

D

D D

D

E

E

E
E

E

E
E

F

F
F

F F
F

F

H

H

H
H H H H

0 2 4 6 8 10 12 14
Number of Agents

0

2

4

6

8

Sp
ee

du
p

Car Plan (iv)

A

A

A

A

A

A

A

B

B

B
B

B

B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
IncCopySplitF F
IncCopySplitHistoryH H

LP1 (v)

A

A

A

A

A

A

A

B

B

B

B

B
B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

LP2 (vi)

A

A

A

A

A

A

A

B

B

B
B

B
B

B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

ReBackCompA A
ReBackB B
ReResetC C
ReResetSplitD D
CopyAllE E
InCopySplitF F
IncCopySplitHistoryH H

LP3 (vii)

A

A

A

A

A

A

A

B

B

B

B

B

B
B

C

C

C

C

C

C

C

D

D

D

D

D

D

D

E

E

E

E

E

E

E

F

F

F

F

F

F

F

H

H

H

H

H

H

H

0 2 4 6 8 10 12 14
Number of Agents

0

5

10

Sp
ee

du
p

LP4 (viii)

Fig. 2. Speedups for Benchmarks

implementation on a set of benchmarks, focusing on evaluating the different sharing
strategies. All the timings presented are averages over 5 runs.

The Puzzle benchmark (4×4 numeric puzzle) is characterized by a balanced search
tree with fairly short branches and a balanced distribution of choice-points in the dif-
ferent branches; as a result (Fig. 1) the performance and the scalability is good, and all
methods provide comparable results. On the other hand, in the Queens benchmark (14-
queen problem, Fig. 1), we can observe that the speedup of ReBack is significant lower
due to (1) the mismatch problem and (2) the high cost of recomputation. In this problem,
the branches are long and the cost for generating them is comparatively higher than just
copying the corresponding data structures. Furthermore, splitting methods tend to per-
form worse; when the system works near the end of the branches, the agents exchange
work more frequently and the work has “poorer” quality; in this case splitting schemes
tend to generate larger messages (to secure larger chunks of work) without being bal-
anced by advantages in terms of work obtained. The analogous behavior occurs in the
Vertex problem (30-node vertex covering, Fig. 2(i)). The speedups are higher thanks to
the large number of choice-points generated (towards the root part of the tree).

In the Seating party benchmark (Fig. 2(ii)) we see marked differences in perfor-
mance. All speedups tend to flatten for many processors, due to the small number of
choice-points, located in the top part of the tree. In this experiment, the winners are
the simple methods: ReReset and CopyAll where the idle agents start from the root of
computation tree. In the Pigeon Hole experiment (pigeonhole problem with 9 holes and
10 pigeons, Fig. 2(iii)), all methods reach excellent speedups (11 using 12 agents). The



758 Hung Viet Le and Enrico Pontelli

benchmark has both long and short branches, with a balanced distribution of choice-
points on each branch. The Car Plan (planning with continuous time, Fig. 2(iv)) has
a peculiar behavior. It offers a large number of choice-points but many with small
branches. The recomputation schemes are superior, as they quickly reconstruct short
branches, while copying requires transfering all atom and rule objects.

The problems Lp1-Lp4 are synthetic problems proposed in ASSAT [8]—and chal-
lenging for SAT solvers. The speedups of the system are almost linear. ReBack and
IncCopySplit slow down in some cases due to mismatch situations. Similarly, CopyAll
tends to produce worse performance due to the large size of the models constructed—
making non-incremental copying considerably slower.

Discussion: The experiments conducted led to important conclusions regarding the de-
velopment of efficient solvers: (a) There is considerable less uniformity than other
frameworks (i.e., no clear winner); (b) The simple methods (e.g., ReReset) behave
better than the complicated ones. (c) The recomputation approach appears to be rela-
tively better then the copying approach in most of the experiments.
In greater details, we have that:
• Sharing methods that rely on exchange of histories for determining the nca node

are faster than methods that rely on approximated relative positions and broadcast.
• If the number of agents is small, the methods maintaining the relative positions

behave very well. Although the system must handle more messages, the speedups
show the benefits of choosing the “right” agents to share work with.

• Short executions are not suitable to copying (due to messages overhead).
• In recomputation, stack splitting does not greatly improve performance. In ReReset,

the receiver stops recomputing at the first open node, while in ReResetSplit it has
to recompute until the last node. The gain from the extra open nodes has to balance
the extra cost; this is not the case in search trees with work near the root.

This indicates the need to support different sharing strategies in the same solver; dif-
ferent strategies might lead over 60% variations in speedups. The most suitable strat-
egy can be selected based on various factors. At the application level, relevant factors
include the number of agents (if small, methods based on relative positions are bet-
ter), the hardware platform (if the ratio of cpu speed vs. interconnection speed is high,
then recomputation is preferred), and the size of the application (recomputation seems
better for small applications). Factors arising during the computation can also be em-
ployed to dynamically select the most effective strategy; let expand rate denote the

ratio numberOfAtoms
numberGuessedAtoms , where numberGuessedAtoms is the number atom splits and

numberOfAtoms is the total number of atoms in the stack (size of the partial model).

0. If expand rate is high then copying is better than recomputation. If the test is per-
formed dynamically, and the focus is on incremental/relative positions methods,
then expand rate is limited to the part of the search tree branch below the nca node.

1. If recomputation is chosen, then backtracking can be selected if the path from the
root to the nca node is significantly longer then the path from the start node to the
nca node, otherwise reset can be employed. In copying, the copy-all schemes are
more effective than incremental-copy if the nca node is closer to the root.



An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers 759

2. Based on the number of atoms between contiguous choice-points, an agent can de-
cide whether to use splitting. E.g., in recomputation, if the sender estimates that the
number of atoms between the consecutive open nodes is large, or the expand-rate is
large, and there are only a few open nodes, then it transfers work without splitting.

3. If the system uses the relative positions and a mismatch situation occurs, then it can
temporarily, or permanently, switch to a reset or an history comparison scheme.

Work is in progress to build a self-adapting sharing procedure based on these ideas.

Communication Frequency: All the communications between agents are asyn-
chronous. It is very important to determine the frequency used by the agents to check
for incoming messages, and the interval used to wait for a reply before giving up. Our
experiments indicate that the frequency and delay intervals should be tied to the esti-
mated size of the tasks available in the open-nodes—to avoid giving away small tasks
or depriving the work-sender of work. Another significant factor is the sharing strategy
adopted, in particular: (1) the presence of splitting requires a lower frequency; (2) ap-
proaches having higher communication requirements (e.g., copying or methods using
relative positions) impose lower frequencies and higher delays; (3) approaches requir-
ing more time to reach the alternative (e.g., recomputation) need longer delays.

5 Conclusions and Future Work

In this paper, we presented preliminary results from an investigation of efficient method-
ologies for the execution of ASP and SAT solvers on Beowulf clusters. In particular, we
focused on the analysis of distinct task sharing strategies, obtained as variations of the
copying and the recomputation schemes—which have been theoretically proved [12]
to be optimal in the context of search parallelism. The different schemes have been
developed to cover a significant spectrum of alternatives, balancing computation and
communication. The ideas have been developed in a complete parallel ASP solver, and
evaluated on a variety of benchmarks.

Relatively little work has appeared in the literature regarding parallelization of SAT
and ASP solvers. A preliminary proposal in this area has been presented in [11], based
on a simple solver; [4] presented a master-slave ASP search parallel engine, based
on PVM (with limited evaluation). [15] describes a distributed implementation of the
SATO SAT solver, based on a master-slave structure; the model relies on a fairly stan-
dard copying scheme. PaSAT [1] is a parallel SAT solver based on shared memory and
dynamic scheduling. [3] presents a large scale copy-based SAT solver.

Current work is focused on analyzing dynamic scheduling strategies and on the
investigation of how scheduling interacts with the sharing strategies presented here.

References

1. W. Blochinger et al. Parallel SAT-Checking with Lemma Exchange: Implementation and
Applications. Theory & Apps. of Satisfiability Testing, ENDM, 2001.

2. M. Bonacina. Taxonomy of Parallel Strategies for Deduction. Annals Math & AI, 29, 2000.
3. W. Chrabakh, R. Wolski. A Parallel SAT solver for the Grid. UCSB TR 2003-05, 2003.



760 Hung Viet Le and Enrico Pontelli

4. R. Finkel et al. Computing Stable Models in Parallel. AAAI Spring Symposium, 2001.
5. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. ILPS, 1988.
6. G. Gupta et al. Parallel Execution of Prolog Programs. ACM TOPLAS, 23(4):472–602, 2001.
7. V. Lifschitz. Answer Set Planning. LPNMR, 373–374. Springer, 1999.
8. F. Lin and Y. Zhao. Computing Answer Sets By SAT Solvers. AAAI, 2002.
9. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Programming

Paradigm. The Logic Programming Paradigm. Springer Verlag, 1999.
10. L. Perron. Search and Parallelism in Constraint Programming. CP, Springer, 1999.
11. E. Pontelli and O. El-Kathib. Construction of a Parallel Engine for ASP. PADL, 2001.
12. D. Ranjan et al. On the Complexity of Or-Parallelism. NGC, 17(3):285–308, 1999.
13. P. Simons. Extending and Implementing the Stable Model Semantics. PhD, HUT, 2000.
14. K. Villaverde et al. A methodology for order-sensitive execution of non-deterministic lan-

guages on beowulf platforms. Euro-Par, pages 694–703, 2003.
15. H. Zhang et al. PSATO: a Distributed Propositional Prover and its Application to Quasigroup

Problems. J. Symbolic Computation, 11:1–18, 1996.


	An Investigation of Sharing Strategies for Answer Set Solvers and SAT Solvers
	1 Introduction
	2 A Parallel Engine for ASP
	3 Parallel Work Sharing Strategies
	3.1 Recomputation-Based Methods
	3.2 Copy-Based Methods
	3.3 Further Implementation Details - Scheduling and Termination

	4 Experimental Results
	5 Conclusions and Future Work
	References




