Abstract
The PageRank algorithm is used by search engines such as Google to order web pages. It uses an iterative numerical method to compute the maximal eigenvector of a transition matrix derived from the web’s hyperlink structure and a user-centred model of web-surfing behaviour. As the web has expanded and as demand for user-tailored web page ordering metrics has grown, scalable parallel computation of PageRank has become a focus of considerable research effort.
In this paper, we seek a scalable problem decomposition for parallel PageRank computation, through the use of state-of-the-art hypergraph-based partitioning schemes. These have not been previously applied in this context. We consider both one and two-dimensional hypergraph decomposition models. Exploiting the recent availability of the Parkway 2.1 parallel hypergraph partitioner, we present empirical results on a gigabit PC cluster for three publicly available web graphs. Our results show that hypergraph-based partitioning substantially reduces communication volume over conventional partitioning schemes (by up to three orders of magnitude), while still maintaining computational load balance. They also show a halving of the per-iteration runtime cost when compared to the most effective alternative approach used to date.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolff, R.: Stochastic Modeling and the Theory of Queues. Prentice-Hall International Editions, Englewood Cliffs (1989)
Haveliwala, T.H.: Topic sensitive PageRank: A context-sensitive ranking algorithm for web search. Tech. Rep., Stanford University (March 2003)
Alpert, C., Huang, J.-H., Kahng, A.: Recent Directions in Netlist Partitioning. Integration, the VLSI Journal 19(1–2), 1–81 (1995)
Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel sparse matrix–vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)
Vastenhouw, B., Bisseling, R.H.: A Two-Dimensional Data Distribution Method for Parallel Sparse Matrix-Vector Multiplication. SIAM Review 47(1), 67–95 (2005)
Trifunovic, A., Knottenbelt, W.J.: Parkway2.0: A Parallel Multilevel Hypergraph Partitioning Tool. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 789–800. Springer, Heidelberg (2004)
Boman, E., Devine, K., Heaphy, R., Catalyurek, U., Bisseling, R.: Parallel hypergraph partitioning for scientific computing. Tech. Rep. SAND05–2796C, Sandia National Laboratories, Albuquerque, NM (April 2005)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: Twelfth International World Wide Web Conference, Budapest, Hungary, May 2003, pp. 261–270. ACM, New York (2003)
de Jager, D.: PageRank: Three distributed algorithms. M.Sc. thesis, Department of Computing, Imperial College London, London SW7 2BZ, UK (September 2004)
Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Mathematics 1(3), 335–400 (2004)
Haveliwala, T.H., Kamvar, S.D.: The second eigenvalue of the google matrix. Tech. Rep., Computational Mathematics, Stanford University (March 2003)
Google (June 20, 2005), http://www.google.com/
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block structure of the web for computing PageRank. In: Stanford database group tech. rep., Computational Mathematics, March 2003, Stanford University (2003)
Gleich, D., Zhukov, L., Berkhin, P.: Fast parallel PageRank: A linear system approach. Tech. Rep., Institute for Computation and Mathematical Engineering, Stanford University (2004)
Catalyurek, U.V., Aykanat, C.: A Fine-Grain Hypergraph Model for 2D Decomposition of Sparse Matrices. In: Proc. 8th International Workshop on Solving Irregularly Structured Problems in Parallel, San Francisco, USA (April 2001)
Ucar, B., Aykanat, C.: Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiples. SIAM Journal of Scientific Computing 25(6), 1837–1859 (2004)
Hendrickson, B.A.: Graph partitioning and parallel solvers: Has the Emperor no clothes. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)
Trifunovic, A., Knottenbelt, W.: A Parallel Algorithm for Multilevel k-way Hypergraph Partitioning. In: Proc. 3rd International Symposium on Parallel and Distributed Computing, July 2004, pp. 114–121. University College Cork, Ireland (2004)
Davis, T.: University of Florida Sparse Matrix Collection (March 2005), http://www.cise.ufl.edu/research/sparse/matrices
UbiCrawler project, http://webgraph-data.dsi.unimi.it/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradley, J.T., de Jager, D.V., Knottenbelt, W.J., Trifunović, A. (2005). Hypergraph Partitioning for Faster Parallel PageRank Computation. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds) Formal Techniques for Computer Systems and Business Processes. EPEW WS-FM 2005 2005. Lecture Notes in Computer Science, vol 3670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549970_12
Download citation
DOI: https://doi.org/10.1007/11549970_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28701-8
Online ISBN: 978-3-540-31903-0
eBook Packages: Computer ScienceComputer Science (R0)