Abstract
Filtering a signal with a finite impulse response (FIR) filter introduces dependencies between the errors in the filtered image due to overlapping filter masks. If the filtering only serves as a first step in a more complex estimation problem (e.g. orientation estimation), then these correlations can turn out to impair estimation quality.
The aim of this paper is twofold. First, we show that orientation estimation (with estimation of optical flow being an important special case for space-time volumes) is a Total Least Squares (TLS) problem: Tp \(\thickapprox\) 0 with sought parameter vector p and given TLS data matrix T whose statistical properties can be described with a covariance tensor. In the second part, we will show how to improve TLS estimates given this statistical information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: Proc. DAGM 1997, pp. 367–374 (1997)
Jähne, B.: Digitale Bildverarbeitung, 4th edn. Springer, Heidelberg (1997)
van Huffel, S., Vandewalle, J.: The Total Least Squares problem: Computational aspects and analysis. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1991)
Ng, L., Solo, V.: Errors-in-variables modeling in optical flow estimation. IEEE Transactions on Image Processing 10, 1528–1540 (2001)
Mühlich, M., Mester, R.: Subspace methods and equilibration in computer vision. Technical Report XP-TR-C-21, J.W.G. University Frankfurt (1999)
Hartley, R.I.: In defence of the eight-point algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence 6, 580–593 (1997)
Mühlich, M., Mester, R.: Optimal homogeneous vector estimation. In: Scandinavian Conference on Image Analysis, Jönssu, Finland (2005) (accepted)
Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
Mühlich, M.: Estimation of Homogeneous Vectors and Applications in Computer Vision – Extended Version. PhD thesis, J. W. Goethe-Universität Frankfurt (2004)
Mester, R.: A system-theoretical view on local motion estimation. In: Proc. IEEE SouthWest Symposium on Image Analysis and Interpretation, Santa Fé (NM), pp. 201–205. IEEE Computer Society, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mühlich, M., Mester, R. (2005). A Fast Algorithm for Statistically Optimized Orientation Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_30
Download citation
DOI: https://doi.org/10.1007/11550518_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28703-2
Online ISBN: 978-3-540-31942-9
eBook Packages: Computer ScienceComputer Science (R0)