Skip to main content

A Fast Algorithm for Statistically Optimized Orientation Estimation

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

  • 1922 Accesses

Abstract

Filtering a signal with a finite impulse response (FIR) filter introduces dependencies between the errors in the filtered image due to overlapping filter masks. If the filtering only serves as a first step in a more complex estimation problem (e.g. orientation estimation), then these correlations can turn out to impair estimation quality.

The aim of this paper is twofold. First, we show that orientation estimation (with estimation of optical flow being an important special case for space-time volumes) is a Total Least Squares (TLS) problem: Tp \(\thickapprox\) 0 with sought parameter vector p and given TLS data matrix T whose statistical properties can be described with a covariance tensor. In the second part, we will show how to improve TLS estimates given this statistical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: Proc. DAGM 1997, pp. 367–374 (1997)

    Google Scholar 

  2. Jähne, B.: Digitale Bildverarbeitung, 4th edn. Springer, Heidelberg (1997)

    Google Scholar 

  3. van Huffel, S., Vandewalle, J.: The Total Least Squares problem: Computational aspects and analysis. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1991)

    MATH  Google Scholar 

  4. Ng, L., Solo, V.: Errors-in-variables modeling in optical flow estimation. IEEE Transactions on Image Processing 10, 1528–1540 (2001)

    Article  MATH  Google Scholar 

  5. Mühlich, M., Mester, R.: Subspace methods and equilibration in computer vision. Technical Report XP-TR-C-21, J.W.G. University Frankfurt (1999)

    Google Scholar 

  6. Hartley, R.I.: In defence of the eight-point algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence 6, 580–593 (1997)

    Article  Google Scholar 

  7. Mühlich, M., Mester, R.: Optimal homogeneous vector estimation. In: Scandinavian Conference on Image Analysis, Jönssu, Finland (2005) (accepted)

    Google Scholar 

  8. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  9. Mühlich, M.: Estimation of Homogeneous Vectors and Applications in Computer Vision – Extended Version. PhD thesis, J. W. Goethe-Universität Frankfurt (2004)

    Google Scholar 

  10. Mester, R.: A system-theoretical view on local motion estimation. In: Proc. IEEE SouthWest Symposium on Image Analysis and Interpretation, Santa Fé (NM), pp. 201–205. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mühlich, M., Mester, R. (2005). A Fast Algorithm for Statistically Optimized Orientation Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_30

Download citation

  • DOI: https://doi.org/10.1007/11550518_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics