Skip to main content

Semidefinite Clustering for Image Segmentation with A-priori Knowledge

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

Graph-based clustering methods are successfully applied to computer vision and machine learning problems. In this paper we demonstrate how to introduce a-priori knowledge on class membership in a systematic and principled way: starting from a convex relaxation of the graph-based clustering problem we integrate information about class membership by adding linear constraints to the resulting semidefinite program. With our method, there is no need to modify the original optimization criterion, ensuring that the algorithm will always converge to a high quality clustering or image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: ICML, pp. 19–26 (2001)

    Google Scholar 

  2. Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: ICCV, pp. 975–982 (1999)

    Google Scholar 

  3. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22(8), 888–905 (2000)

    Google Scholar 

  4. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semi-definite programming. In: ICML, pp. 323–330 (2002)

    Google Scholar 

  5. Keuchel, J., Schnörr, C., Schellewald, C., Cremers, D.: Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE PAMI 25(11), 1364–1379 (2003)

    Google Scholar 

  6. Yu, S.X., Shi, J.: Segmentation given partial grouping constraints. IEEE PAMI 26(2), 173–183 (2004)

    Google Scholar 

  7. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: ICCV, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  8. Hermes, L., Buhmann, J.M.: Semi-supervised image segmentation by parametric distributional clustering. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 229–245. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Nock, R., Nielsen, F.: Grouping with bias revisited. In: CVPR (2004)

    Google Scholar 

  10. Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In: Brualdi, R., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-Theoretical Problems in Linear Algebra. IMA Vol. Math. Appl., vol. 50, pp. 107–151. Springer, Heidelberg (1993)

    Google Scholar 

  11. Perona, P., Freeman, W.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Sarkar, S., Soundararajan, P.: Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE PAMI 22(5), 504–525 (2000)

    Google Scholar 

  13. Hertz, T., Shental, N., Bar-Hillel, A., Weinshall, D.: Enhancing image and video retrieval: Learning via equivalence constraints. In: CVPR (2003)

    Google Scholar 

  14. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)

    Article  MATH  Google Scholar 

  15. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. of the ACM 42(6), 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Methods in Convex Programming. SIAM, Philadelphia (1994)

    Google Scholar 

  17. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background knowledge. In: ICML, pp. 577–584 (2001)

    Google Scholar 

  18. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. of the Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416–423 (2001)

    Google Scholar 

  20. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE PAMI 24(5), 603–619 (2002)

    Google Scholar 

  21. Keuchel, J., Schnörr, C., Heiler, M.: Hierarchical image segmentation based on semidefinite programming. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 120–128. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heiler, M., Keuchel, J., Schnörr, C. (2005). Semidefinite Clustering for Image Segmentation with A-priori Knowledge. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_39

Download citation

  • DOI: https://doi.org/10.1007/11550518_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics