Abstract
In this text we show how points, point pairs, lines, planes, circles, spheres, and rotation, translation and dilation operators and their uncertainty can be evaluated from uncertain data in a unified manner using the Geometric Algebra of conformal space. This extends previous work by Förstner et al. [3] from points, lines and planes to non-linear entities and operators, while keeping the linearity of the estimation method. We give a theoretical description of our approach and show the results of some synthetic experiments.
This work has been supported by DFG grant SO-320/2-3.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. PAMI 9(5), 698–700 (1987)
Bookstein, F.L.: Fitting conic sections to scattered data. Comp. Graph. Image Proc. 9, 56–71 (1979)
Förstner, W., Brunn, A., Heuel, S.: Statistically testing uncertain geometric relations. In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennung 2000, Informatik Aktuell, pp. 17–26. Springer, Berlin (2000)
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)
Heuel, S.: Uncertain Projective Geometry. LNCS, vol. 3008. Springer, Heidelberg (2004)
Koch, K.-R.: Parameter Estimation and Hypothesis Testing in Linear Models. Springer, Heidelberg (1997)
Mikhail, E.M., Ackermann, F.: Observations and Least Squares. University Press of America, Lanham, MD20706, USA (1976)
Perwass, C., Förstner, W.: Uncertain geometry with circles, spheres and conics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data. Kluwer Academic Publ., Dordrecht (2005) (to be publ.)
Perwass, C., Gebken, C., Grest, D.: CLUCalc (2004), http://www.clucalc.info/
Perwass, C., Hildenbrand, D.: Aspects of geometric algebra in Euclidean, projective and conformal space. Technical Report Number 0310, CAU Kiel, Institut für Informatik (September 2003)
Perwass, C., Sommer, G.: Numerical evaluation of versors with Clifford algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 341–349. Birkhäuser, Basel (2002)
Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra, part I: The stratification of mathematical spaces. Journal of Mathematical Imaging and Vision 22, 27–48 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perwass, C., Gebken, C., Sommer, G. (2005). Estimation of Geometric Entities and Operators from Uncertain Data. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_57
Download citation
DOI: https://doi.org/10.1007/11550518_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28703-2
Online ISBN: 978-3-540-31942-9
eBook Packages: Computer ScienceComputer Science (R0)