Abstract
Differential motion estimation in image sequences is based on measuring the orientation of local structures in spatio-temporal signal volumes. For this purpose, discrete filters which yield estimates of the local gradient are applied to the image sequence. Whereas previous approaches to filter optimization concentrate on the reduction of the systematical error of filters and motion models, the method presented in this paper is based on the statistical characteristics of the data. We present a method for adapting linear shift invariant filters to image sequences or whole classes of image sequences. We show how to simultaneously optimize derivative filters according to the systematical errors as well as to the statistical ones.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. Journal of Computer Vision 12, 43–77 (1994)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, August 1981, pp. 674–679 (1981)
Simoncelli, E.P.: Distributed Analysis and Representation of Visual Motion. PhD thesis, Massachusetts Institut of Technology, USA (1993)
Simoncelli, E.P.: Design of multi-dimensional derivative filters. In: Intern. Conf. on Image Processing, Austin, TX (1994)
Knutsson, H., Andersson, M.: Optimization of sequential filters. Technical Report LiTH-ISY-R-1797, Computer Vision Laboratory, Linköping University, S-581 83 Linköping, Sweden (1995)
Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: Mustererkennung 1997 (Proc. DAGM 1997). Springer, Heidelberg (1997)
Knutsson, H., Andersson, M.: Multiple space filter design. In: Proc. SSAB Swedish Symposium on Image Analysis, Göteborg, Sweden (1998)
Elad, M., Teo, P., Hel-Or, Y.: Optimal filters for gradient-based motion estimation. In: Proc. Intern. Conf. on Computer Vision, ICCV 1999 (1999)
Robinson, D., Milanfar, P.: Fundamental performance limits in image registration. IEEE Transactions on Image Processing 13 (2004)
Mester, R.: A new view at differential and tensor-based motion estimation schemes. In: Michaelis, B. (ed.) Pattern Recognition 2003, Magdeburg, Germany. LNCS. Springer, Heidelberg (2003)
Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: First International Conference on Computer Vision, ICCV, Washington, DC, pp. 433–438. IEEE Computer Society Press, Los Alamitos (1987)
Haussecker, H., Spies, H.: Motion. In: Handbook of Computer Vision and Applications, pp. 310–396 (1999)
Jähne, B., Scharr, H., Körkel, S.: Principles of filter design. In: Handbook of Computer Vision and Applications, pp. 125–153 (1999)
Mester, R.: On the mathematical structure of direction and motion estimation. In: Workshop on Physics in Signal and Image Processing, Grenoble, France (2003)
Mühlich, M., Mester, R.: A statistical unification of image interpolation, error concealment, and source-adapted filter design. In: Proc. Sixth IEEE Southwest Symposium on Image Analysis and Interpretation, Lake Tahoe, NV/U.S.A (2004)
Krajsek, K., Mester, R.: Wiener-optimized discrete filters for differential motion estimation. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 30–41. Springer, Heidelberg (2007)
Mester, R.: A system-theoretical view on local motion estimation. In: Proc. IEEE SouthWest Symposium on Image Analysis and Interpretation, Santa Fé (NM). IEEE Computer Society Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krajsek, K., Mester, R. (2005). Signal and Noise Adapted Filters for Differential Motion Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_59
Download citation
DOI: https://doi.org/10.1007/11550518_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28703-2
Online ISBN: 978-3-540-31942-9
eBook Packages: Computer ScienceComputer Science (R0)