A Goal Deliberation Strategy for BDI Agent Systems

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach | lamersd}@informatik.uni-hamburg.de

Abstract. One aspect of rational behavior is that agents can pursue multiple
goals in parallel. Current BDI theory and systems do not provide a theoretical
or architectural framework for deciding how goals interact and how an agent can
decide which goals to pursue. Instead, they assume for simplicity reasons that
agents always pursue consistent goal sets. By omitting this important aspect of
rationality, the problem of goal deliberation is shifted from the architecture to the
agent programming level and needs to be handled by the agent developer in an
error-prone ad-hoc manner. In this paper a goal deliberation strategy called Easy
Deliberation is proposed allowing agent developers to specify the relationships
between goals in an easy and intuitive manner. It is based on established concepts
from goal modeling as can be found in agent methodologies like Tropos and re-
quirements engineering techniques like KAOS. The Easy Deliberation strategy
has been realized within the Jadex BDI reasoning engine and is further explained
by an example application. To fortify the practical usefulness of the approach it is
experimentally shown that the computational cost for deliberation is acceptable
and only increases polynomially with the number of concurrent goals.

1 Introduction

Goal-directedness is one important characteristic of rational agents, because it allows
agents to exhibit pro-active behavior [17] and it is argued that the BDI (belief-desire-
intention) model [3] is well suited to describe this kind of agents [14]. Typically, goal-
directed agents should be capable of pursuing multiple goals simultaneously. As a con-
sequence the agent’s goals can interact positively or negatively with each other [16].
Positive interaction means that one goal contributes to the fulfillment of another one,
whereas negative contribution indicates a conflict situation in which one goal hinders
the other. Such contribution relationships between goals are commonly used in mod-
eling agent applications, e.g. in the Tropos methodology [7] and in the requirements
engineering technique KAQOS [10]. Despite their usefulness, most implemented agent
systems based on the BDI model do not support any mechanism for handling goal re-
lationships at the architectural level. Hence, the cumbersome task of ensuring that the
agent will never process any conflicting goals at the same time is left to the agent de-
veloper.

The main aspect of goal deliberation is “How can an agent deliberate on its (pos-
sibly conflicting) goals to decide which ones shall be pursued?” [5]. Considering this
question from an architectural point of view it is of interest how a goal deliberation strat-
egy can be integrated into a BDI infrastructure. Thereby, the agent infrastructure has the

tasks to activate the strategy at certain points in time and to provide a clearly defined
interface by specifying the possible operations for conflict resolution and exploiting
positive goal interactions. These operations are constrained by the attitudes supported
by the agent architecture. E.g. only when the architecture distinguishes between goals
and desires the deliberation process can resort to both concepts.

Tackling the question from a strategy-centric point of view it is necessary to address
at least the following issues:

1. What are the important influence factors that can be used to drive the decision
process? As influence factors all of the agents attitudes such as the active goals or
plans can be considered. Additionally, several approaches utilize meta-information
about these attitudes such as resource requirements [15, 16].

2. When and how often shall the agent deliberate about its goals? Generally, the strat-
egy could require that the agent engages in the deliberation process in regular in-
tervals (e.g. time or cycle driven) or on demand (e.g. when a new goal was created)
or in a mixture of both.

3. About what goal set shall the agent deliberate? The options range from deliberation
between just two goals to the consideration of all goals of an agent.

The approach presented in this paper proposes a deliberation strategy called Easy De-
liberation which allows for specifying the relationships between goals for conflict de-
tection. At runtime an extended BDI system ensures that the constraints of the concrete
deliberation settings, as specified by an agent developer, are respected and only consis-
tent goal sets are pursued at any one time. Main design rationale behind the strategy is
the ease of use for agent developers requiring minimal specification overhead.

The remainder of this paper is structured as follows: In Section 2 explicit goal repre-
sentation as necessary prerequisite for goal deliberation is discussed. Section 3 presents
the conceptualization, realization and experimental evaluation of the Easy Deliberation
strategy. A brief review of related work is introduced in Section 4. The paper concludes
with a summary and an outlook on future work.

2 Explicit Goal Representation

Realizing a goal deliberation strategy has the necessary prerequisite that an agent is
aware of its goals at any one time. In classical agent languages such as AgentSpeak(L)
[12] and current BDI systems such as JACK [9] or Jason [2] this prerequisite is not ful-
filled. The main reason for this shortcoming is that goals are represented in the transient
form of events, which causes an agent to only know about its goals at the moment they
need to be processed. As a consequence an agent e.g. cannot easily defer the process-
ing of a certain goal, because there is no semantics behind the event representing the
agent’s intended desire. Hence, in the several papers [5, 14] this implicit representation
was criticized and different enhancements were proposed.

In this paper we build on the explicit representation of goals as described in [5]. In
short, it consists of a generic goal lifecycle (cf. Fig. 1) that exactly describes the states
and transition relationships of goals at runtime and forms the basis for different goal
types such as perform, achieve, query, maintain. Adopted goals can be in either of the

/ Adopted \

1o

: Context
Creation =y e, [S Condition ' Drop
Condition ; ; Condition
. ! @ @ option v . @ ®
create “ adopt) E drop O
Option < Suspended :

suspend Finished

Legend

bl Negated condition
D-——O Condition guards transition
D—-—o Condition triggers transition
@ Deliberate new option

® Deliberate deactivated goal \

Fig. 1. Goal lifecycle (adapted from [5])

option
(deactivate)

suspend

deliberation
actions

activate i
Active

finished

substates Option, Active or Suspended, whereby only active goals are currently pursued
by the agent. Options and suspended goals represent inactive goals, where options are
inactive, because the agent explicitly wants them to be, e.g. because an option conflicts
with some active goal. In contrast, suspended goals currently must not be pursued,
because their context is invalid. They will remain inactive until their context is valid
again and they become options.

Additionally, some basic properties common to all goal types have been defined.
Among those the most important ones are: A creation condition that defines when a
new goal instance is created; a context condition that describes when a goal’s execu-
tion should be suspended (to be resumed when the context is valid again); and a drop
condition that defines when a goal instance is removed. At runtime, goal state changes
occur, whenever one of the aforementioned conditions triggers or the agent intentionally
changes the state, e.g. by exploiting a goal deliberation mechanism for this purpose.

3 TheEasy Deliberation Strategy

Integrating a goal deliberation strategy requires that the agent can engage into the delib-
eration process whenever the strategy demands. Additionally, the operations available
to the deliberation mechanism need to be clearly defined (cf. architectural viewpoint in
Section 1). As a foundation for the definition of available operations for goal delibera-
tion strategies, the generic goal lifecycle is used (see Fig. 1). For goal deliberation only
adopted goals are of relevance as they represent the goals an agent is aware of.

From this lifecycle the operations for activating an option and deactivating an active
goal, i.e. making it an option again, are derived as interface for goal deliberation, i.e.
these transitions should be under control of the deliberation strategy (bold transitions
in Fig. 1). This set of operations should not be considered as being the only possibility,
alternative strategies might incorporate other actions such as drop.

3.1 Strategy Conceptualization

The Easy Deliberation strategy is conceived to allow real-time goal deliberation even
when an agent pursues a multitude of goals simultaneously. The strategy is based on
practical considerations derived from example applications and ideas from goal mod-
eling as can be found in the agent methodology Tropos [7] and the requirements engi-
neering technique KAOS [10], which both propose directed contribution links between
goals. According to Section 1, the strategy will be explained by answering the charac-
teristic questions:

1. What are the important influence factors that can be used to drive the decision pro-
cess? The strategy is based only on information about goals, intentionally factoring
out the plan level. Two main concepts are used to describe deliberation information
within goal type declarations: cardinalities and inhibition arcs. Cardinalities can
be used to constrain the maximum number of active goals of a specific type at run-
time, whereas inhibition arcs are used to declare negative contribution relationships
between two goals on type level as well as on instance level. On the type level it
can be specified that a goal of a given type inhibits goals of the referenced type.
For a finer-grained specification instance-level relationships between goals can be
defined by attaching constraints to the inhibition links, which determine the goal in-
stances affected by the inhibition. The strategy requires the inhibition links forming
a directed acyclic graph to avoid infinite deliberation loops.

2. When and how often shall the agent deliberate about its goals? The deliberation
process is initiated on demand. In Fig. 1 the triggering state transitions are depicted.
Generally two different situations can arise, in which deliberation becomes neces-
sary: First, a goal can become an option either when a new goal is adopted or when
the context of a suspended goal becomes valid again. In these cases the deliberation
process needs to decide whether the new option can be activated and additionally
what the consequences of the activation are, i.e. which other active goals need to be
deactivated to avoid having conflicting goals (1: Deliberate new option). Second,
an active goal can become inactive when it gets suspended, finished or dropped.
In this case, the deliberation has to determine which options have been possibly
inhibited by the deactivated goal. For each of these options it needs to be checked
whether it can be reactivated (2: Deliberate deactivated goal).

3. About what goal set shall the agent deliberate? The deliberation process only has
to consider a local subset of the agent’s goals, derived from the goal that triggered
the deliberation with its state transition (see above). For goal types with cardinality,
all instances of the goal type have to be considered. In addition, all goals with
incoming and outgoing inhibition relationships to the triggering goal have to be
taken into account.

In the following both goal deliberation actions will be described more formally.
Given that all goals of an agent are in one of the states option, active or other defined
by the sets I, I',, I, respectively, the full goal set of an agent is comprised of I" =
r,ur,Jrywithr,nri,=Ir,Nnr,=Ir,NrI, =0.Agoal~ e I'is defined as
a tuple (gt, s) with gt being the user defined goal template in which creation, context
and drop condition among other things are specified and s € {option, active, other}

being the actual state of the goal. For simplicity reasons other aspects of concrete goal
instances such as parameter values are not considered here.

The Deliberate new option action is responsible for activating an option ~, =
(gto,option) € T,, if allowed in the current context. Therefore, first it has to be
checked, if the goal can be activated by testing cardinality and inhibitions with the
predicate pq.:(7,) defined as:

pact(’}/o) Ty — {true, false}; pact(’}/o) =Vvye Fa(V - 'Yo) A | Fn |< fcard(gto)
with I, = {y = (gt, active) € I'y | gt = gto A Yo - 7}
and fearda(gto) : I' — N (cardinality function)

and —C I" x I" (inhibition relation)

The predicate p..t(7,) IS to true, when there is no active goal that inhibits goal ~,,
i.e. no pair (v,7,), 7 € I is part of the inhibition relation —C I" x I", and when
the number of hindering goals in the set I, is lower than the allowed cardinality of
this goal defined by the function f....4(7,). In the set of hindering goals are only those
active goals which have the same template as the considered option gt = gt , and which
are not inhibited by the option v, - ~ (because these active goals will be subsequently
be made to an option). If the goal could be activated it needs to be determined if other
currently active goals need to be deactivated. The set of active goals to be deactivated
Tipp is defined as I, = {7y € I'n | 7o — 7}, which includes all goals the newly
activated goal inhibits.

Thus, if an option can be activated the set of adopted goals changes so that the
option is made to an active goal and all newly inhibited active goals become options:

Fnew = '\ {70} U {{gto, active)} \ Iinn U Lopt

with Iope = {{gt, option) | (gt,s) € I'inn}

The Deliberate deactivated goal action has to compute for a just deactivated goal
Yo = {gto,option) € I, the set of options I'.s: for which it needs to be checked
whether they can be reactivated:

Liest ={v € I, | gt = gto Vv, — y}withy = (gt, option)

This set is composed of all options which have the same template as the considered
goal gt = gt,, because possibly cardinality allows for another goal of this type being
activated. Additionally, all options need to be considered, which were inhibited by the
deactivated goal v, — ~. Note, that this is not the same set as I';,,;, because in this case
inhibited options instead of active goals are considered. Of course, such goals will only
be activated if the deactivated goal was the only inhibitor. As result of performing this
action new Deliberate new option actions are produced for every option for which the
deactivated goal was a necessary condition being not activated.

3.2 Realization

The newly conceived deliberation strategy is designed in terms of operations (Deliber-
ate new option, Deliberate deactivated goal) which operate on the internal state of the
agent. These operations have to be performed at proper times, e.g. when a new goal is
adopted or an active goal is suspended or dropped (cf. Fig. 1). Therefore, these opera-
tions should not be executed continuously in each interpreter cycle. Instead, they should
be activated whenever the need for goal deliberation arises.

To allow such flexible activation of goal deliberation operations a new interpreter
architecture is proposed, which does not rely on a fixed interpreter cycle. The basic
idea of the architecture is to break up the traditional BDI interpreter cycle [13] into a
small set of self-contained meta-actions, which are invoked as needed, rather than being
executed in a fixed sequence. The resulting set of meta-actions roughly corresponds to
the steps of the original interpreter (see Fig. 2).

01 initialize-state();

02 repeat
. o . . Agent Terminate
03 options := option-generator(event-queue); Init n Action & Plan
04 selected-options := deliberate(options); Initialize -state() 7 grop-impossible attitudes()
05 update-intentions(selected-options); [|]
) Execute Goal Finished
06 execute(); Plan Step PrOLf;;?ol_:?vent drop-impossible-attitudes()
07 get-new-external-events(); CERHE) ot cosssh] acee()
' A

08 drop-successful-attitudes(); [\]
09 d . ibl itud . Find Applicable Select Schedule

rop-impossible-attitudes(); Candidates Candidates Candidates
10 end repeat oplion-generalor deliberate update-intentionsi

Fig. 2. Abstract interpreter (from [13]) and basic meta actions

The basic mode of operation of the proposed interpreter is depicted in Fig. 3. The
interpreter is based on a data structure called Agenda where all meta-actions to be pro-
cessed are collected. The interpreter continuously selects the next entry from the agenda
and executes it, thereby changing the internal state of the agent. The execution of an ac-
tion may further lead to the creation of new actions (direct effects), which are inserted
into the agenda. Moreover, state changes may cause side effects, e.g. when a goal has to
be dropped due to a changed belief. These side effects are also inserted to the agenda.
The details of this architecture are out of the scope of this paper, and will be covered in
another paper.

The presented interpreter architecture has been realized in the Jadex BDI reasoning
engine [4], which establishes a rational agent layer on top of the JADE platform [1]. In
Jadex, an agent type is described within an XML-file that adheres to a BDI metamodel
(cf. [11]) specified in XML schema. In addition, for each plan used by the agent, a plan
body has to be implemented in an ordinary Java class.

To integrate the Easy Deliberation strategy into the Jadex system, the basic set of
interpreter meta-actions is extended with the newly defined Easy Deliberation actions
(Deliberate new option and Deliberate deactivated goal). The creation of these actions

IAgenda
O External Actions
. (A? (A? (e.g. received messages)
directeffects sideeffects
R
Action Condition
Execution Evaluation

action selection state changes

transition Side-effect Determination
functions

agent state
(beliefs, goals,
plans)

. Current Action Legend

. Scheduled Actions
Main Interpreter (O New Actions

Fig. 3. Interpreter architecture

is accomplished through conditions that guard the identified state transitions in the goal
lifecycle. In order to allow the specification of user-defined deliberation settings in ap-
plications the Jadex BDI metamodel has been extended to incorporate the cardinality
and inhibition settings directly within the XML agent specifications.

3.3 Example Application

To illustrate the strategy an example application called “cleaner world” is outlined (cf.
[5]). The basic idea is that an autonomous robot has at daytime the task to look for
waste in some environment and clean up the located pieces by bringing them to a near
waste-bin. At night it should stop cleaning and instead patrol around to guard its en-
vironment. Additionally, it always has to monitor its battery state and reload it at a
charging station when the energy level drops below some threshold. From this scenario
the four corresponding top-level goals PerformLookFor\Waste, PerformPatrol, Achieve-
CleanupWaste and MaintainBatterylLoaded are derived. Initially, a cleaner possesses a
PerformLookForWaste, a PerformPatrol, and a MaintainBatteryLoaded goal, whereas
AchieveCleanupWaste goals are created for every piece of waste it discovers. To ensure
correct operation several constraints must be met and are modeled by specific delibera-
tion settings as described next (cf. Fig. 4):

— Only one AchieveCleanupWaste goal must be active at the same time to avoid the
cleaner running to different pieces of waste concurrently. Therefore, the cardinality
of this goal type is restricted to one.

— The agent must pursue exactly one of the top-level goals at the same time, whereby
MaintainBatterylLoaded is the most important goal inhibiting all other goals. The
AchieveCleanupWaste goal inhibits the PerformLookFor\Waste goal to force the
agent to clean up known waste before looking for new. These inhibition relation-
ships are introduced at the type-level, i.e. they always apply to all instances of,

Maintain

Battery Loaded

inhibits

Achieve
Cleanup Waste

Perform /é

inhibits| Look For Waste

inhibits if waste-
position is nearer

Fig. 4. Constraints between goals of a cleaner agent

e.g., AchieveCleanupWaste goals. Note, that no deliberation is necessary to decide
between PerformLookForWaste and PerformPatrol, as these goals have different
contexts (at daytime vs. at night).

— For improved performance, the cleaner should always clean up the nearest piece
of waste first. Hence, an instance-level inhibition arc for the AchieveCleanupWaste
goal is introduced. An AchieveCleanupWaste goal instance inhibits another one,
when its waste position is nearer to the agent. Note, that this constraint is not suf-
ficient to replace the cardinality condition introduced earlier, because two or more
waste pieces could have exactly the same distance from the cleaner.

The design decisions concerning the deliberation settings of the modeled goals can be
directly mapped to the implementation. The extended Jadex XML schema allows de-
liberation settings to be embedded into the agent’s goal specifications (see Fig.5). The
Jadex interpreter then uses these specifications to execute the agent, thereby automati-
cally respecting all modeled dependencies between the goals.

01 <maintaingoal name="MaintainBatteryLoaded">

02 [omitted parameter and condition specs. for brevity]
03 <deliberation>

04 <inhibits ref="AchieveCleanupWaste"/>

05 <inhibits ref="PerformLookForWaste"/>

06 <inhibits ref="PerformPatrol"/>

07 </deliberation>

08 </maintaingoal>

09

10 <achievegoal name="AchieveCleanupWaste">

11 [omitted parameter and condition specs. for brevity]
12 <deliberation cardinality="1">

13 <inhibits ref="PerformLookForWaste"/>

14 <inhibits ref="AchieveCleanupWaste">
15 $beliefbase.my_location.getDistance($ref.waste.location) >
16 $beliefbase.my_location.getDistance($goal.waste.location)

17 </inhibits>
18 </deliberation>
19 </achievegoal>

Fig. 5. Cleaner agent XML fragment

3.4 Evaluation

For agents in dynamic domains, deliberation strategies are only useful, when they pro-
vide fast and efficient results, still allowing the agent to quickly react to changes in
the environment. The Easy Deliberation strategy was designed to be computationally
inexpensive, by only considering bilateral goal relationships. Therefore, the cost for de-
liberation should increase at most quadratically with the number of concurrent goals of
an agent. To verify this analytical expectations, an empirical evaluation was performed.

Figure 6 (a) shows the results from an artificial benchmark, in which an increasing
amount of concurrent goals with instance-level inhibition links has to be processed by
an agent. In this scenario every present goal competes with any other goal, but the goals
can always be pursued altogether as application-specific code is omitted. This means
that no conflicts between goals arise, and the agent does not perform actual actions
to achieve its goals. The data we were interested in concerns the pure time for goal
deliberation, the remaining time for goal processing (including e.g. plan selection and
execution) and the ratio between them. The first thing to note is that the cost of goal
processing increases linearly with the number of goals (as shown by the trend function
y with regression coefficient R2). This is due to more plan instances being created,
which have to be considered in the plan selection process. Also one can see, that the
cost of goal deliberation grows quadratically as expected. Not surprisingly, the ratio
between goal processing and deliberation approximates to 100% very fast. With more
than 100 concurrent goals, the agent spends 90 percent of its time thinking about which
goals to pursue. Nevertheless, the absolute costs of deliberation are low (less than 100
milliseconds even for 500 concurrent goals).

100 o o0 oo oo 100,00% 500 20,00%
90 o 21 90,00% 450 Lﬁm 18,00%
g .
o Ratio (%) / \j\D__SD Processing time (millis) N
80 S 80,00% 400 16,00%
& / \D\EL)
70 70,00% & 350 S 14,00%
@ 2 S
= = o Q
T 60 / 60,00% E 300 ——"— P 12,00%
= o 3 o o Ratio (%) -}
& 50 5000% 5 5 250 = -+ \ 10.00% &
= 5 o
] g "
2 4 40,00% 200 5 8,00%
2 Delibration time (milhs)/ y = 0,8723¢ + 0,4582x 2 S \:h
£ o £ §
[, R? = 0,9999 000 F 150 < 6,00%
" 100 : 4,00%
2 20,00% Delibration time (millis) oo
y = 0,337x 50 5 2,00%
10 — 10,00% -0
Processing time (millis) R" = 0,9334
o = ——— 0 1 0,00%
pucd 100 9 8 70 60 50 40 30 2 10 0
50 100 150 200 250 300 350 400 450 500
No. of waste pieces to clean up
No. of goals
(a) Artificial benchmark (b) Cleaner example

Fig. 6. Evaluation results

To collect also data related to practice, a second evaluation was performed in the
cleaner example presented above. In this case not only the speed of the reasoning en-
gine was measured, but also the costs incurred by the application. Therefore, in Fig. 6

(b) the time needed for processing a single goal is about 100 times higher, due to the
need for computing distances between pieces of waste (for deliberation) and for per-
forming actions like moving the robot around. In this setting the robot starts with 100
cleanup goals which are processing in the order enforced by the deliberation settings.
One can see that the deliberation cost decreases faster, as the robot cleans up more and
more waste. Moreover, in this practical example, the relative time spent for goal delib-
eration does not exceed 14 percent of the total execution time, although the agent starts
with a large number of goals (100). Even though a generalization of these results for
other application domains cannot easily be drawn, this example is an indication for the
overhead incurred by using explicit goal deliberation being acceptable, when used in
the right context.

3.5 Discussion

The Easy Deliberation strategy has been used in several example applications and is
sufficiently expressive for a wide variety of settings. Nevertheless, due to its simplicity
it exhibits several conceptual limitations:

— The strategy does only consider bilateral relationships. Hence, it is impossible to
specify e.g. that two goals together are more important than another single goal.

— Conflicts between subgoals cannot always be resolved optimally, e.g. when a con-
flict between subgoals could be resolved by replacing one of the subgoals with
another non-conflicting subgoal [14].

— Conflicts at plan level are not considered, which means that inconsistencies be-
tween plans e.g. because of access to conflicting resources are not detected.

— Positive interactions between goals are not considered, which means that the strat-
egy cannot identify and exploit potentially common subgoals.

Although some of these limitations indicate that the strategy cannot be applied uni-
versally to all kinds of problems, it is a straight-forward and easily understandable
mechanism, due to reusing ideas from modeling approaches. The reason for choos-
ing inhibition links instead of using utility values is that it allows to adopt a local view
and frees the agent developer from establishing a global ordering between all goals.
Our practical experiences have shown that the explicit declaration of goal deliberation
information makes agent specifications simpler and more readable because concerns
are clearly separated. The overhead in many practical settings is low, because a typical
application consists of several different agents each deliberating only about small sets
of related goals. Moreover, empirical evaluations reveal that the strategy only incurs
low computational costs in general.

4 Related Work

The topic of goal deliberation within a single agent has not attracted much attention
in the BDI agent community yet. One reason for this deficiency is that most imple-
mented systems do not explicitly support goals and desires. Instead, these systems use

10

a transient representation of goals as a type of event rendering the consideration about
goals impossible [14]. In the area of planning agents a considerable amount of work has
been devoted to plan scheduling. Main objectives of plan scheduling concern avoiding
conflicts in plan execution and exploiting common steps via plan merging [6, 8]. These
approaches are different in that they require agents to have complete plans and do not
support real-time decision control about goals and plans [15].

Our work concerning the Easy Deliberation strategy is similar to the work of Than-
garajah et al., who propose strategies for detecting and resolving conflicts [15] as well
as for exploiting positive goal interaction [16]. The influence factors of the conflict res-
olution strategy from [15] are annotated meta-data to plans and goals called “interaction
summaries” containing information about their effects, pre- and in-conditions. This in-
formation is used at runtime to defer the adoption of possibly conflicting goals resp. the
execution of plans. Compared to Easy Deliberation, the strategy greatly differs in the
amount and the kind of deliberation data used and the resulting behavior. Our approach
is designed to manage with minimal deliberation information based on agent modeling
techniques providing an easy usable mechanism. In contrast, Thangarajah et al. require
more detailed information that in return allows for handling conflicts also at plan level.
Furthermore, besides ensuring that only conflict free goals are pursued, our strategy
also respects the intended order of processing and is suitable for all goal types due to
the underlying generic goal lifecycle.

5 Conclusion and Outlook

This paper motivates the need for goal deliberation strategies. To release the agent de-
veloper from the burden of ensuring that an agent always pursues consistent goal sets,
an agent needs explicit information allowing it to deliberate about its goals, and au-
tonomously select an appropriate goal set based on the current situation. In this paper
the requirements for goal deliberation are discussed and a set of characteristic questions
for conceiving a specific goal deliberation strategy is proposed.

The Easy Deliberation strategy is developed based on concepts from agent modeling
techniques. It is designed to be intuitive to use with little specification effort and enables
an agent to deliberate about its goals by activating and deactivating certain goals. The
realization introduces two strategy specific meta-actions that are added to the underly-
ing BDI interpreter architecture, by determining their activation points. During agent
execution, the strategy enforces that only conflict free goals are pursued, additionally
respecting the relative order of goal importance. Practical experiences with different
applications indicate that the strategy considerably simplifies agent development and
only incurs a low computational overhead.

Future work is devoted to the further investigation of deliberation strategies. We
intend to experiment with alternative strategies, e.g. based on the work of Thangara-
jah et al. for comparing the effectiveness of different approaches in typical application
domains. Especially, it is interesting to evaluate the advantages of detecting also plan
conflicts and possibly extend the Easy Deliberation strategy in this respect.

11

References

10.

11.

12.

13.

14.

15.

16.

17.

F. Bellifemine, G. Caire, and G. Rimassa. JADE: The JADE platform for mobile MAS
applications. In Net.ObjectDays 2004: AgentExpo, 2004.

R. Bordini and J. Hlbner. Jason User Guide, 2004.

M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, Cambridge,
Massachusetts, 1987.

L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short Overview. In Net.ObjectDays
2004: AgentExpo, 2004.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI Agent
Systems. In Proceedings of the Second Wor kshop on Programming Multiagent Systems (Pro-
MASD4), 2004.

B. Clement and E. Durfee. ldentifying and resolving conflicts among agents with hierarchical
plans. In AAAI Workshop on Negotiation, 1999.

F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Development Methodol-
ogy: Processes, Models and Diagrams. In Proc. of 1st Int. Joint Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 02), 2002.

J. Horty and M. Pollack. Evaluating new options in the context of existing plans. Artificial
Intelligence, 127(2):199-220, 2001.

N. Howden, R. Rénnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents-Summary
of an Agent Infrastructure. In Proc.of the 5th ACM Int.Conf. on Autonomous Agents, 2001.
E. Letier and A. van Lamsweerde. Deriving operational software specifications from system
goals. SGSOFT Softw. Eng. Notes, 27(6):119-128, 2002.

A. Pokahr and L. Braubach. Jadex User Guide, 2003.

A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
R. van Hoe, editor, Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands, 1996.

A. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. of the 1st Int. Conf.
on MAS (ICMAS 95), 1995.

J. Thangarajah, L. Padgham, and J. Harland. Representation and Reasoning for Goals in BDI
Agents. In Proc. of the 25th Australasian Computer Science Conf. (ACSC2002), 2002.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference Between
Goals in Intelligent Agents. In Proc. of the 18th Int. Joint Conf. on Al (IJCAI 2003), 2003.
J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Exploiting Positive Goal In-
teraction in Intelligent Agents. In Proc. of in the 2nd Int. Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), 2003.

M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2):115-152, 1995.

12

