Abstract
Utility-based software agents are especially suited to represent human principals in recurring automatic negotiation applications. In order to work efficiently, utility-based agents need to obtain models of the relevant part of the principal’s preference structure – represented by utility functions. So far agent theory usually applies expected utility measurement. It has, as we will show, certain shortcomings in real life applications. As an alternative, we suggest an approach based on con-joint analysis, which is a well-understood procedure widely used in marketing research and psychology, but gets only small recognition in agent theory. It offers a user-friendly way to derive quantitative utility values for multi-attribute alternatives from the principal’s preferences. In this paper, we introduce the technique in detail along with some extensions and improvements suited for agent applications. Additionally a learning algorithm is derived, keeping track of changes of the principal’s preference structure and adjusting measurement errors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addelman, S.: Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments. Technometrics 4(1), 21–46 (1962)
Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: critique des Postulats et Axiomes de l’Ecole Américaine. Econometrica 21, 503–546 (1953)
Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden – Eine anwendungsorientierte Einführung, Berlin (2000)
Brembeck, W., Howell, W.: Persuasion – A Means of Social Influence, 2nd edn., Englewood Cliffs, NJ (1976)
Caroll, J.D.: Individual Differences and Multidimensional Scaling. In: Sheppard, R.N., Romney, A.K., Nerlove, S.B. (hrsg.) Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, vol. 1, pp. 105–155 (1972)
Chattin, P., Wittink, D.R.: Further Beyond Conjoint Measurement: Towards a Comparison of Methods. In: Perrault, W.D. (ed.) Advances in Consumer Research, Chicago (1977)
Czap, H., Becker, M.: Multi-Agent Systems and Microeconomic Theory: A Negotiation Approach to solve Scheduling Problems in High Dynamic Environments. In: Proceedings of 36th Annual Hawaii International Conference on System Sciences (CD-Rom), Hawaii (2003)
Gingerenzer, G., Selten, R. (eds.): Bounded Rationality: The Adaptive Toolbox, Cambridge (2001)
Green, P.E., Krieger, A.M., Wind, Y.: Thirty Years of Conjoint Analysis: Reflections and Prospects. Inter-faces 31(3), 56–73 (2001)
Jacroux, M.: A Note on the Determination and Construction of Minimal Orthogonal Main-Effect Plans. Technometrics 34(1), 92–96 (1992)
Kessler, M., Poppensieker, M., Porten, M., Stotz, A., Zub, D.: Lernende Agenten & conjoint-analytische Verfahren - Entwicklung einer Conjoint-Analyse-Software zur Verwendung in FIPA-konformen Multiagentensystemen, Studienprojekt am Lehrstuhl für Wirtschaftsinformatik I der Universität Trier, Trier (2004)
Klein, M.: Die Conjoint-Analyse: Eine Einführung in das Verfahren mit einem Ausblick auf mögliche sozialwissenschaftliche Anwendungen. ZA-Information 50, 7–45 (2002)
Kruskal, J.B.: Analysis of Factorial Experiments by Estimating Monotone Transformation of Data. Journal of the Royal Statistical Society, Series B 27, 251–263 (1965)
Kruskal, J.B.: Nonmetric Multidimensional Scaling: A Numerical Approach. Psychometrika 29(2), 1–27 (1964)
Laux, H.: Entscheidungstheorie, Berlin (2003)
Luce, R.D., Raiffa, H.: Games and Decisions – Introduction and Critical Survey, New York (1957)
Luce, R.D., Tukey, J.W.: Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. Journal of Mathematical Psychology 1, 1–27 (1964)
Oskamp, S.: Attitudes and Opinions, 2nd edn., Englewood Cliffs, NJ (1991)
Raghavarao, D.: Constructions and Combinatorial Problems in Design of Experiments, New York (1971)
Schiaffino, S., Amandi, A.: User – interface agent interaction: personalization issues. International Journal of Human-Computer Studies 60, 129–148 (2004)
Sen, S., Weiss, G.: Learning in Multiagent Systems. In: Weiss, G. (ed.) Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence, Cambridge (1999)
Srinivasan, V., Shocker, A.D.: Estimating the Weight for Multiple Attributes in a Composite Criterion Using Pairwise Judgements. Psychometrika 38, 473–493 (1973)
Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, Princeton (1942)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becker, M., Czap, H., Poppensieker, M., Stotz, A. (2005). Estimating Utility-Functions for Negotiating Agents: Using Conjoint Analysis as an Alternative Approach to Expected Utility Measurement. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds) Multiagent System Technologies. MATES 2005. Lecture Notes in Computer Science(), vol 3550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550648_9
Download citation
DOI: https://doi.org/10.1007/11550648_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28740-7
Online ISBN: 978-3-540-28741-4
eBook Packages: Computer ScienceComputer Science (R0)