Skip to main content

Estimating Utility-Functions for Negotiating Agents: Using Conjoint Analysis as an Alternative Approach to Expected Utility Measurement

  • Conference paper
Multiagent System Technologies (MATES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3550))

Included in the following conference series:

  • 507 Accesses

Abstract

Utility-based software agents are especially suited to represent human principals in recurring automatic negotiation applications. In order to work efficiently, utility-based agents need to obtain models of the relevant part of the principal’s preference structure – represented by utility functions. So far agent theory usually applies expected utility measurement. It has, as we will show, certain shortcomings in real life applications. As an alternative, we suggest an approach based on con-joint analysis, which is a well-understood procedure widely used in marketing research and psychology, but gets only small recognition in agent theory. It offers a user-friendly way to derive quantitative utility values for multi-attribute alternatives from the principal’s preferences. In this paper, we introduce the technique in detail along with some extensions and improvements suited for agent applications. Additionally a learning algorithm is derived, keeping track of changes of the principal’s preference structure and adjusting measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addelman, S.: Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments. Technometrics 4(1), 21–46 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: critique des Postulats et Axiomes de l’Ecole Américaine. Econometrica 21, 503–546 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  3. Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden – Eine anwendungsorientierte Einführung, Berlin (2000)

    Google Scholar 

  4. Brembeck, W., Howell, W.: Persuasion – A Means of Social Influence, 2nd edn., Englewood Cliffs, NJ (1976)

    Google Scholar 

  5. Caroll, J.D.: Individual Differences and Multidimensional Scaling. In: Sheppard, R.N., Romney, A.K., Nerlove, S.B. (hrsg.) Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, vol. 1, pp. 105–155 (1972)

    Google Scholar 

  6. Chattin, P., Wittink, D.R.: Further Beyond Conjoint Measurement: Towards a Comparison of Methods. In: Perrault, W.D. (ed.) Advances in Consumer Research, Chicago (1977)

    Google Scholar 

  7. Czap, H., Becker, M.: Multi-Agent Systems and Microeconomic Theory: A Negotiation Approach to solve Scheduling Problems in High Dynamic Environments. In: Proceedings of 36th Annual Hawaii International Conference on System Sciences (CD-Rom), Hawaii (2003)

    Google Scholar 

  8. Gingerenzer, G., Selten, R. (eds.): Bounded Rationality: The Adaptive Toolbox, Cambridge (2001)

    Google Scholar 

  9. Green, P.E., Krieger, A.M., Wind, Y.: Thirty Years of Conjoint Analysis: Reflections and Prospects. Inter-faces 31(3), 56–73 (2001)

    Google Scholar 

  10. Jacroux, M.: A Note on the Determination and Construction of Minimal Orthogonal Main-Effect Plans. Technometrics 34(1), 92–96 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kessler, M., Poppensieker, M., Porten, M., Stotz, A., Zub, D.: Lernende Agenten & conjoint-analytische Verfahren - Entwicklung einer Conjoint-Analyse-Software zur Verwendung in FIPA-konformen Multiagentensystemen, Studienprojekt am Lehrstuhl für Wirtschaftsinformatik I der Universität Trier, Trier (2004)

    Google Scholar 

  12. Klein, M.: Die Conjoint-Analyse: Eine Einführung in das Verfahren mit einem Ausblick auf mögliche sozialwissenschaftliche Anwendungen. ZA-Information 50, 7–45 (2002)

    Google Scholar 

  13. Kruskal, J.B.: Analysis of Factorial Experiments by Estimating Monotone Transformation of Data. Journal of the Royal Statistical Society, Series B 27, 251–263 (1965)

    MathSciNet  Google Scholar 

  14. Kruskal, J.B.: Nonmetric Multidimensional Scaling: A Numerical Approach. Psychometrika 29(2), 1–27 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Laux, H.: Entscheidungstheorie, Berlin (2003)

    Google Scholar 

  16. Luce, R.D., Raiffa, H.: Games and Decisions – Introduction and Critical Survey, New York (1957)

    Google Scholar 

  17. Luce, R.D., Tukey, J.W.: Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. Journal of Mathematical Psychology 1, 1–27 (1964)

    Article  MATH  Google Scholar 

  18. Oskamp, S.: Attitudes and Opinions, 2nd edn., Englewood Cliffs, NJ (1991)

    Google Scholar 

  19. Raghavarao, D.: Constructions and Combinatorial Problems in Design of Experiments, New York (1971)

    Google Scholar 

  20. Schiaffino, S., Amandi, A.: User – interface agent interaction: personalization issues. International Journal of Human-Computer Studies 60, 129–148 (2004)

    Article  Google Scholar 

  21. Sen, S., Weiss, G.: Learning in Multiagent Systems. In: Weiss, G. (ed.) Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence, Cambridge (1999)

    Google Scholar 

  22. Srinivasan, V., Shocker, A.D.: Estimating the Weight for Multiple Attributes in a Composite Criterion Using Pairwise Judgements. Psychometrika 38, 473–493 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, Princeton (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becker, M., Czap, H., Poppensieker, M., Stotz, A. (2005). Estimating Utility-Functions for Negotiating Agents: Using Conjoint Analysis as an Alternative Approach to Expected Utility Measurement. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds) Multiagent System Technologies. MATES 2005. Lecture Notes in Computer Science(), vol 3550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550648_9

Download citation

  • DOI: https://doi.org/10.1007/11550648_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28740-7

  • Online ISBN: 978-3-540-28741-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics