Skip to main content

Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

The early detection Alzheimer’s disease (AD) is an important challenge. In this paper, we propose a novel method for early detection of AD using electroencephalographic (EEG) recordings: first a blind source separation algorithm is applied to extract the most significant spatio-temporal components; these components are subsequently wavelet transformed; the resulting time-frequency representation is approximated by sparse “bump modeling”; finally, reliable and discriminant features are selected by orthogonal forward regression and the random probe method. These features are fed to a simple neural network classifier. The method was applied to EEG recorded in patients with Mild Cognitive Impairment (MCI) who later developed AD, and in age-matched controls. This method leads to a substantially improved performance (93% correctly classified, with improved sensitivity and specificity) over classification results previously published on the same set of data. The method is expected to be applicable to a wide variety of EEG classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Musha, T., Asada, T., Yamashita, F., Kinoshita, T., Chen, Z., Matsuda, H., Masatake, U., Shankle, W.R.: A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer’s disease. Clinical Neurophysiology 113(7), 1052–1058 (2002)

    Article  Google Scholar 

  2. Jeong, J.: EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology 115, 1490–1505 (2004)

    Article  Google Scholar 

  3. DeKosky, S.T., Marek, K.: Looking backward to move forward: early detection of neurodegenerative disorders. Science 302(5646), 830–834 (2003)

    Article  Google Scholar 

  4. Nestor, P.J., Scheltens, P., Hodges, J.R.: Advances in the early detection of Alzheimer’s disease. Nature Medicine 10(suppl.), S34–41 (2004) Review

    Google Scholar 

  5. Cichocki, A., Shishkin, S.L., Musha, T., Leonowicz, Z., Asada, T., Kurachi, T.: EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease. Clinical Neurophysiology 116(3), 729–737 (2005)

    Article  Google Scholar 

  6. Cichocki, A.: Blind Signal Processing Methods for Analyzing Multichannel Brain Signals. International Journal of Bioelectromagnetism 6(1) (2004)

    Google Scholar 

  7. Cichocki, A., Amari, S.: Adaptative Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2003)

    Google Scholar 

  8. Tong, L., Soon, V., Huang, Y.F., Liu, R.: Indeterminacy and identifiability of blind identification. IEEE Transactions CAS 38, 499–509 (1991)

    Article  MATH  Google Scholar 

  9. Tong, L., Inouye, Y., Liu, R.: Waveform-preserving blind estimation of multiple independent sources. IEEE Transactions on Signal Processing 41(7), 2461–2470 (1993)

    Article  MATH  Google Scholar 

  10. Szupiluk, R., Cichocki, A.: Blind signal separation using second order statistics. In: Proceedings of SPETO, pp. 485–488 (2001)

    Google Scholar 

  11. Cichocki, A., Amari, S., Siwek, K., Tanaka, T., et al.: ICALAB toolboxes. Available online at http://www.bsp.brain.riken.jp/ICALAB

  12. Vialatte, F., Martin, C., Dubois, R., Quenet, B., Gervais, R., Dreyfus, G.: A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural Networks (submitted)

    Google Scholar 

  13. Poularikas, A.D.: The transforms and applications handbook. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  14. Kronland-Martinet, R., Morlet, J., Grossmann, A.: The wavelet Transform. In: Chen, C.H. (ed.) Expert Systems and Pattern Analysis, pp. 97–126. World Scientific, Singapore (1987)

    Google Scholar 

  15. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience 16, 4240–4249 (1996)

    Google Scholar 

  16. Ohara, S., Crone, N.E., Weiss, N., Lenz, F.A.: Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desychronization in humans. Clinical Neurophysiology 115, 1641–1652 (2004)

    Article  Google Scholar 

  17. Caplan, J.B., Madsen, J.R., Raghavachari, S., Kahana, M.J.: Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. Journal of Neurophysiology 86, 368–380 (2001)

    Google Scholar 

  18. Düzel, E., Habib, R., Schott, B., Schoenfeld, A., Lobaugh, N., McIntosh, A.R., Scholz, M., Heinze, H.J.: A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory. Neuroimage 18, 185–197 (2003)

    Article  Google Scholar 

  19. Dubois, R.: Application de nouvelles méthodes d’apprentissage à la détection précoce d’anomalies en électrocardiographie. PhD thesis, Université Pierre et Marie Curie - Paris VI (2004), Available from http://www.neurones.espci.fr/Francais.Docs/dossier_recherche/bibliographie/theses_soutenues.htm#ancre41560

  20. Dubois, R., Quenet, B., Faisandier, Y., Dreyfus, G.: Building meaningful representations in knowledge-driven nonlinear modeling. Neurocomputing (2005) (in print)

    Google Scholar 

  21. Vialatte, F., Martin, C., Ravel, N., Quenet, B., Dreyfus, G., Gervais, R.: Oscillatory activity, behaviour and memory, new approaches for LFP signal analysis. 35th annual general meeting of the European brain and behaviour society, 17-20 September 2003, Barcelona, Spain – Acta Neurobiologiae Experimentalis 63(suppl.) (2003)

    Google Scholar 

  22. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, pp. 425–430. Cambridge Univ. Press, New York (1992)

    Google Scholar 

  23. Guyon, I., Elisseef, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  24. Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 50, 1873–1896 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jong, K., Marchiori, E., Sebag, M.: Ensemble Learning with Evolutionary Computation: Application to Feature Ranking. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 1133–1142. Springer, Heidelberg (2001)

    Google Scholar 

  26. Stoppiglia, H., Dreyfus, G., Dubois, R., Oussar, Y.: Ranking a Random Feature for Variable and Feature Selection. Journal of Machine Learning Research 3, 1399–1414 (2003)

    Article  MATH  Google Scholar 

  27. Haykin, S.: Neural Networks – a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  28. Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society: Series B 36, 111–147 (1974)

    MATH  Google Scholar 

  29. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews 29, 169–195 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T., Shishkin, S.L., Gervais, R. (2005). Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_106

Download citation

  • DOI: https://doi.org/10.1007/11550822_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics