Skip to main content

Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

A hybrid approach combining Cellular Automata (CA) and Artificial Neural Networks (ANNs), capable of providing suitable dynamic simulations of some complex systems, is formalized and tested. The proposed method allows to incorporate in the CA transition function the available a priori knowledge of the interaction rules between the elementary system constituents. In order to effectively describe the remaining unknown local rules, an embedded ANN is exploited. The ANN component of the transition function is designed, on the basis of the available data about the emerging behavior of the system to be simulated, by an evolutionary strategy involving both the architecture and weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yeh, A.G.O., Li, X.: Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. Journal of Geogr. Inf. Science 16, 323–343 (2002)

    Article  Google Scholar 

  2. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks 8, 694–713 (1997)

    Article  Google Scholar 

  3. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

  4. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16, 259–271 (1999)

    Article  Google Scholar 

  5. Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trunfio, G.A. (2005). Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_54

Download citation

  • DOI: https://doi.org/10.1007/11550822_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics