Skip to main content

Statistical Properties of Lattices Affect Topographic Error in Self-organizing Maps

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

Self-organizing maps (SOM) have been obtained mainly on regular lattices, embedded in euclidean or non-euclidean spaces [1]. We present preliminar results that show SOM can be formed on non-regular lattices by giving evidence that topographic error (TE) is influenced by a few statistical parameters of the neuron lattice, such as the characteristic path length (L), the cluster coefficient (C) and the characteristic connectivity length (Lg). TE is lower not in regular lattices, but in lattices that present a particular set of statistical parameters. In an attempt to identify that set of statistical parameters, we applied mutual information function between the parameters and the TE as well as C4.5 algorithm to obtain rules that identify lattices in which SOMs show low TE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritter, H.: Self-Organizing Maps on non-euclidean Spaces Kohonen Maps. In: Oja, E., Kaski, S. (eds.), pp. 97–108 (1999)

    Google Scholar 

  2. Cottrell, M., Fort, J.C., Pagés, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119–138 (1998)

    Article  MATH  Google Scholar 

  3. Kirk, J., Zurada, J.: A two-stage algorithm for improved topography preservation in self-organizing maps. Int. Con. on Sys., Man and Cyb. 4, 2527–2532 (2000)

    Google Scholar 

  4. Haykin, S.: Neural Networks, a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  5. Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, Heidelberg (2000)

    Google Scholar 

  6. Flanagan, J.: Sufficiente conditions for self-organization in the SOM with a decreasing neighborhood function of any width. In: Conf. of Art. Neural Networks. Conf. pub. No. 470 (1999)

    Google Scholar 

  7. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: Ordering, convergence properties and energy functions. Biol. Cyb. 67, 47–55 (1992)

    Article  MATH  Google Scholar 

  8. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Computation 9, 1321–1344 (1997)

    Article  Google Scholar 

  9. Bishop, C., Svenson, M., Williams, C.: GTM: The Generative Topographic Mapping. Neural Computation 10, 215–234 (1999)

    Article  Google Scholar 

  10. Ontrup, J., Ritter, H.: Hyperbolic Self-Organizing Maps for Semantic Navigation. Advances in Neural Information Processing Systems 14 (2001)

    Google Scholar 

  11. Bauer, H., Hermann, M., Villman, T.: Neural maps and topographic vector quantization. Neural Networks 12, 659–676 (1999)

    Article  Google Scholar 

  12. Kiviluoto, K.: Topology preservation in Self-organizing Maps. In: Proc. of Int. Conf. on Neural Networks, ICNN 1996, vol. 1, pp. 294–299 (1996)

    Google Scholar 

  13. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology preservation in self-organizing maps: Exact definition and measurement. IEEE Trans. on Neural Networks 8, 256–266 (1997)

    Article  Google Scholar 

  14. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  15. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, E., Schuster, G. (eds.) Handbook of graphs and networks, pp. 1–34. Wiley, Chichester (2002)

    Google Scholar 

  16. Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  17. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  18. Grosse, I., Herzel, H., Buldyrev, S., Stanley, E.: Species dependence of mutual information in coding and noncoding DNA. Physical Review E 61, 5624–5630 (2000)

    Article  Google Scholar 

  19. Shefi, O., Golding, I., Segev, R., Ben-Jacob, E., Ayali, A.: Morphological characterization of in vitro neuronal networks. Phys. Rev. E 66, 21905-1, 21905-5 (2002)

    Google Scholar 

  20. Quinlan, R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neme, A., Miramontes, P. (2005). Statistical Properties of Lattices Affect Topographic Error in Self-organizing Maps. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_67

Download citation

  • DOI: https://doi.org/10.1007/11550822_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics