Skip to main content

Neural Network Model for Extracting Optic Flow

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

  • 1656 Accesses

Abstract

In the MST area of the monkey, there are cells that respond selectively to specific motions of a large area of the visual field, such as rotation or expansion/contraction. They respond steadily even when the location of the center of optic flow shifts on the retina. They are thought to analyze optic flows of the retinal images. This paper proposes a neural network model for these cells. The model performs processing similar to mathematical operations called rot and div in the vector field analysis. It is a hierarchical multilayered network: retina, layer V1, layers MT and layer MST. Each MT cell extracts relative velocity between two adjoining small visual fields, and an MST cell adds the response of many MT cells to extract a specific optic flow. The difference in type of optic flows extracted by MST cells can be created simply by the difference in relative locations between inhibitory and excitatory areas in the receptive fields of the preceding MT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., Iwai, E.: J. Neuroscience 6, 145–157 (1986)

    Google Scholar 

  2. Tanaka, K., Saito, H.: J. Neurophysiology 62, 626–641 (1989)

    Google Scholar 

  3. Tanaka, K., Fukada, Y., Saito, H.: J. Neurophysiology 62, 642–656 (1989)

    Google Scholar 

  4. Duffy, C.J., Wurtz, R.H.: J. Neurophysiology 65, 1329–1345 (1991)

    Google Scholar 

  5. Graziano, M.S.A., Andersen, R.A., Snowden, R.J.: J. Neuroscience 14, 54–67 (1994)

    Google Scholar 

  6. Duffy, C.J., Wurtz, R.H.: J. Neurophysiology 65, 1346–1359 (1991)

    Google Scholar 

  7. Koenderink, J.J.: Vision Research 26, 161–179 (1986)

    Google Scholar 

  8. Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., Iwai, E.: J. Neuroscience 6, 134–144 (1986)

    Google Scholar 

  9. Xiao, D.-K., Raiguel, S., Marcar, V., Orban, G.A.: Cerebral Cortex 7, 1047–3211 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fukushima, K., Tohyama, K. (2005). Neural Network Model for Extracting Optic Flow. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_71

Download citation

  • DOI: https://doi.org/10.1007/11550822_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics