Abstract
A recursive learning algorithm based on the rough sets approach to parameter estimation for radial basis function neural networks is proposed. The algorithm is intended for the pattern recognition and classification problems. It can also be applied to neuro control, identification, and emulation.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, S.: Neural Networks and Fuzzy Systems. Kluwer Academic Publishers, Boston (1997)
Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall, Inc., Upper Saddle River (1999)
Ruan, D. (ed.): Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms. Kluwer Academic Publishers, Boston (1997)
Schweppe, F.C.: Uncertain Dynamic Systems. Prentice-Hall, Englewood Cliffs (1973)
Norton, J.P.: An Introduction to Identification. Academic Press Inc., London (1986)
Pawlak, Z.: Rough sets present state and further prospects. In: Proc. Int. Workshop on Rough Sets and Soft Computing, San Jose, California, pp. 72–76 (1994)
Yasdi, R.: Combining rough sets learning and neural learning method to deal with uncertain and imprecise information. Neurocomputing 7, 61–84 (1995)
Fogel, E., Huang, Y.F.: On the value of information in system identification — bounded noise case. Automatics 18(2), 229–238 (1982)
Halwass, M.: “Least-Squares”-Modificationen in Gegenwart begrenzter Stoerungen. MSR 33(8), 351–355 (1990)
Hägglund, J.: Recursive identification of slowly time-varying parameters. In: Proc. IFAC/IFORS Symp. on Identification and System Parameters Estimation, York, UK, pp. 1137–1142 (1985)
Prechelt, L.: Proben1 – a set of neural network problems and benchmarking rules. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe (September 1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodyanskiy, Y., Gorshkov, Y., Kolodyazhniy, V., Pliss, I. (2005). Rough Sets-Based Recursive Learning Algorithm for Radial Basis Function Networks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_10
Download citation
DOI: https://doi.org/10.1007/11550907_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)