Abstract
This paper extends recent advances in Support Vector Machines and kernel machines in estimating additive models for classification from observed multivariate input/output data. Specifically, we address the question how to obtain predictive models which gives insight into the structure of the dataset. This contribution extends the framework of structure detection as introduced in recent publications by the authors towards estimation of componentwise Support Vector Machines (cSVMs). The result is applied to a benchmark classification task where the input variables all take binary values.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antoniadis, A., Fan, J.: Regularized wavelet approximations (with discussion). Jour. of the Am. Stat. Ass. 96, 939–967 (2001)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Frank, L.E., Friedman, J.H.: A statistical view of some chemometric regression tools. Technometrics 35, 109–148 (1993)
Fu, W.J.: Penalized regression: the bridge versus the LASSO. Journal of Computational and Graphical Statistics 7, 397–416 (1998)
Gunn, S.R., Kandola, J.S.: Structural modelling with sparse kernels. Machine Learning 48(1), 137–163 (2002)
Hastie, T., Tibshirani, R.: Generalized additive models. Chapman and Hall, Boca Raton (1990)
Pelckmans, K., De Brabanter, J., Suykens, J.A.K., De Moor, B.: Maximal variation and missing values for componentwise support vector machines. Technical report, SCD - ESAT - KULeuven, Leuven (2005)
Pelckmans, K., Goethals, I., De Brabanter, J., Suykens, J.A.K., De Moor, B.: Componentwise least squares support vector machines. In: Wang, L. (ed.) Support Vector Machines: Theory and Applications. Springer, Heidelberg (2004) (in press)
Pelckmans, K., Suykens, J.A.K., De Moor, B.: Building sparse representations and structure determination on LS-SVM substrates. Neurocomputing (2005) (in press)
Schlimmer, J.C.: Concept acquisition through representational adjustment. PhD thesis, Department of Information and Computer Science, University of California, Irvine, CA (1987)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)
Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)
Tibshirani, R.J.: Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society 58, 267–288 (1996)
Vapnik, V.N.: Statistical Learning Theory. Wiley and Sons, Chichester (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pelckmans, K., Suykens, J.A.K., De Moor, B. (2005). Componentwise Support Vector Machines for Structure Detection. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_102
Download citation
DOI: https://doi.org/10.1007/11550907_102
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)