Abstract
An overview of data fusion approaches is provided from the signal processing viewpoint. The general concept of data fusion is introduced, together with the related architectures, algorithms and performance aspects. Benefits of such an approach are highlighted and potential applications are identified. Case studies illustrate the merits of applying data fusion concepts in real world applications.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hall, D.L., Llinas, J.: An introd. to multis. data fus... Proc. IEEE 85, 6–23 (1997)
White Jr., F.E.: Joint directors of laboratories data fusion subpanel report. In: Proceedings of the Joint Service Data Fusion Symposium, DFS 1990, pp. 484–496 (1990)
Worden, K., Dulieu-Barton, J.M.: An overview of intelligent fault detection in systems and structures. Structural Health Monitoring 3, 85–98 (2004)
Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91, 1247–1256 (2003)
Dybowski, R., et al. (eds.): Journal of Machine Learning Research: Special issue on the fusion of domain knowledge with data for decision support (July 2003)
Adali, T., et al. (eds.): IEEE Transactions on Neural Networks: Special issue on intelligent multimedia processing (July 2002)
Dasarathy, B.V.: Sensor fusion potential exploitation – Innovative architectures and illustrative applications. Proceedings of the IEEE 85, 24–38 (1997)
Kantz, H., Schreiber, T.: Nonlinear TSE. Cambridge University Press, Cambridge (2004)
Gautama, T., et al.: A novel method for determining the nature of time series. IEEE Transactions on Biomedical Engineering 51, 728–736 (2004)
Mandic, D.P., Chambers, J.A.: RNNs for Prediction. Wiley, Chichester (2001)
Cichocki, A., Amari, S.I.: Adaptive Blind Signal and Image Proc. Wiley, Chichester (2002)
Deco, G., Obradovic, D.: An I.T. Approach to Neural Computing. Springer, Heidelberg (1997)
Bass, T.: Intrus. detect. and multis. data fusion. Comm. ASM 43, 99–105 (2000)
Tax, D.M., et al.: Combining multiple classifiers. Pat. Rec. 33, 1475–1485 (2000)
Brooks, R.R., Ramanathan, P., Sayeed, A.M.: Distributed target classification and tracking in sensor networks. Proceedings of the IEEE 91, 1162–1171 (2003)
Coatrieux, J.L.: A look at integrative science: Biosignal processing and modelling. IEEE Engineering in Medicine and Biology Magazine 23, 9–12 (2004)
Zhao, F., et al.: Collaborative signal and information processing: An information–directed approach. Proceedings of the IEEE 91, 1199–1209 (2003)
Sasiadek, J.Z.: Sensor fusion. Annual Reviews in Control 26, 203–228 (2002)
Waltz, E., Llinas, J.: Multisensor Data Fusion. Artech House (1990)
Pau, L.F.: Sensor Data Fusion. Jnl. of Intel. and Robot. Sys. 1, 103–116 (1988)
Alarcon, V., Barria, J.: Anom. det. in com. net. IEE Proc. Com. 148, 355–362 (2001)
Obradovic, D., et al.: Sensor Fusi In Siemens Car Navigation System. In: Proc. of MLSP 2004, pp. 655–664 (2004)
Mandic, D.P.: http://www.commsp.ee.ic.ac.uk/~mandic
Zhu, C., Kuh, A.: Sensor Network Loc. Using Pat. Rec. In: Proc. of HISC (2005)
Sommer, D., et al.: Appl. LVQ to detect drivers dozing–off. In: Proc. EUNITE (2002)
Wang, W.: et al.: Video Assisted Speech Source Sep. In: Proc. ICASSP, pp. 425–427 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mandic, D.P. et al. (2005). Data Fusion for Modern Engineering Applications: An Overview. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_114
Download citation
DOI: https://doi.org/10.1007/11550907_114
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)