Abstract
We further explore the possibility of using the energy of brain potentials evoked during processing of visual stimuli (VS) as a new biometric tool, where biometric features representing the energy of high frequency electroencephalogram (EEG) spectra are used in the person identification paradigm. For convenience and ease of processing of cognitive processing, in the experiments, simple black and white drawings of common objects are used as VS. In the classification stage, the Elman neural network is employed to classify the generated EEG features. The high recognition rate of 99.62% on an ensemble of 800 raw EEG signals indicates the potential of the proposed method.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pankanti, S., Bolle, R.M., Jain, A.: Biometrics: The Future of Identification. In: Special issue of IEEE Comp. on Biometrics, pp. 46–49 (2000)
Samal, A., Iyengar, P.: Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition 25(1), 65–77 (1992)
Duta, N., Jain, A.K., Mardia, K.V.: Matching of Palmprints. Pattern Recognition Letters 23(4), 477–485 (2002)
Jain, A.K., Ross, A., Pankanti, S.: A Prototype Hand Geometry-based Verification System. In: Proc. Int. Conf. on Audio & Video-Based Biometric Person Identification, pp. 166–171 (1999)
Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG Analysis: A New Approach in Human Identification. IEEE Trans. Instrument & Measurement 50(3), 808–812 (2001)
Daugman, J.: Recognizing Persons by Their Iris Patterns. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics: Personal Identification in Networked Society. Kluwer Academic, Dordrecht (1999)
Korotkaya, Z.: Biometric Person Authentication: Odor (2003), Available online: http://www.it.lut.fi/kurssit/03-04/010970000/seminars/Korotkaya.pdf
Paranjape, R.B., Mahovsky, J., Benedicenti, L., Koles, Z.: The Electroencephalogram as a Biometric. In: Proc. Canadian Conf. on Elect. & Comp. Eng., vol. 2, pp. 1363–1366 (2001)
Poulos, M., Rangoussi, M., Chrissikopoulos, V., Evangelou, A.: Person Identification Based on Parametric Processing of the EEG. In: Proc. IEEE Int. Conf. on Electronics, Circuits, and Systems, vol. 1, pp. 283–286 (1999)
Palaniappan, R.: A New Method to Identify Individuals Using VEP Signals and Neural Network. IEE Proc. - Science, Measurement and Tech. 151(1), 16–20 (2004)
Farwell, L.A., Smith, S.S.: Using Brain MERMER Testing to Detect Concealed Knowledge Despite Efforts to Conceal. J. of Forensic Sciences 46, 1–9 (2001)
Polich, J.: P300 in Clinical applications: Meaning, method, and measurement. In: Niedermeyer, E., da Silva, F.L. (eds.) Electroencephalography Basic Principles, Clinical Applications, and Related Fields, pp. 1005–1018. William and Wilkins, Baltimore (1993)
Misulis, K.E.: Spehlmann’s Evoked Potential Primer: Visual, Auditory and Somatosensory Evoked Potentials in Clinical Diagnosis. Butterworth-Heinemann, Butterworths (1994)
Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
Palaniappan, R., Raveendran, P., Omatu, S.: EEG Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Networks 13(2), 486–491 (2002)
Basar, E., Eroglu, C.B., Demiralp, T., Schurman, M.: Time and Frequency Analysis of the Brain’s Distributed Gamma-Band System. In: IEEE Eng. in Med. & Bio. Mag., pp. 400–410 (1995)
Snodgrass, J.G., Vanderwart, M.: A Standardized Set of 260 Pictures: Norms for Name Agreement, Image Agreement, Familiarity, and Visual Complexity. J. of Exp. Psychology: Human Learning and Memory 6(2), 174–215 (1980)
Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Research Bulletin 38(6), 531–538 (1995)
Kriss, A.: Recording Technique. In: Halliday, A.M. (ed.) Evoked Potentials in Clinical Testing. Churchill Livingstone (1993)
Rumelhart, D.E., McCelland, J.L.: Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1. MIT Press, Cambridge (1986)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proc. Int. J. Conf. on Neural Networks, vol. 3, pp. 21–26 (1990)
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proc. IEEE Int. Conf. on Neural Networks, pp. 586–591 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palaniappan, R., Mandic, D.P. (2005). Energy of Brain Potentials Evoked During Visual Stimulus: A New Biometric?. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_117
Download citation
DOI: https://doi.org/10.1007/11550907_117
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)