Skip to main content

Energy of Brain Potentials Evoked During Visual Stimulus: A New Biometric?

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

  • 3692 Accesses

Abstract

We further explore the possibility of using the energy of brain potentials evoked during processing of visual stimuli (VS) as a new biometric tool, where biometric features representing the energy of high frequency electroencephalogram (EEG) spectra are used in the person identification paradigm. For convenience and ease of processing of cognitive processing, in the experiments, simple black and white drawings of common objects are used as VS. In the classification stage, the Elman neural network is employed to classify the generated EEG features. The high recognition rate of 99.62% on an ensemble of 800 raw EEG signals indicates the potential of the proposed method.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pankanti, S., Bolle, R.M., Jain, A.: Biometrics: The Future of Identification. In: Special issue of IEEE Comp. on Biometrics, pp. 46–49 (2000)

    Google Scholar 

  2. Samal, A., Iyengar, P.: Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition 25(1), 65–77 (1992)

    Article  Google Scholar 

  3. Duta, N., Jain, A.K., Mardia, K.V.: Matching of Palmprints. Pattern Recognition Letters 23(4), 477–485 (2002)

    Article  MATH  Google Scholar 

  4. Jain, A.K., Ross, A., Pankanti, S.: A Prototype Hand Geometry-based Verification System. In: Proc. Int. Conf. on Audio & Video-Based Biometric Person Identification, pp. 166–171 (1999)

    Google Scholar 

  5. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG Analysis: A New Approach in Human Identification. IEEE Trans. Instrument & Measurement 50(3), 808–812 (2001)

    Article  Google Scholar 

  6. Daugman, J.: Recognizing Persons by Their Iris Patterns. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics: Personal Identification in Networked Society. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  7. Korotkaya, Z.: Biometric Person Authentication: Odor (2003), Available online: http://www.it.lut.fi/kurssit/03-04/010970000/seminars/Korotkaya.pdf

  8. Paranjape, R.B., Mahovsky, J., Benedicenti, L., Koles, Z.: The Electroencephalogram as a Biometric. In: Proc. Canadian Conf. on Elect. & Comp. Eng., vol. 2, pp. 1363–1366 (2001)

    Google Scholar 

  9. Poulos, M., Rangoussi, M., Chrissikopoulos, V., Evangelou, A.: Person Identification Based on Parametric Processing of the EEG. In: Proc. IEEE Int. Conf. on Electronics, Circuits, and Systems, vol. 1, pp. 283–286 (1999)

    Google Scholar 

  10. Palaniappan, R.: A New Method to Identify Individuals Using VEP Signals and Neural Network. IEE Proc. - Science, Measurement and Tech. 151(1), 16–20 (2004)

    Article  Google Scholar 

  11. Farwell, L.A., Smith, S.S.: Using Brain MERMER Testing to Detect Concealed Knowledge Despite Efforts to Conceal. J. of Forensic Sciences 46, 1–9 (2001)

    Google Scholar 

  12. Polich, J.: P300 in Clinical applications: Meaning, method, and measurement. In: Niedermeyer, E., da Silva, F.L. (eds.) Electroencephalography Basic Principles, Clinical Applications, and Related Fields, pp. 1005–1018. William and Wilkins, Baltimore (1993)

    Google Scholar 

  13. Misulis, K.E.: Spehlmann’s Evoked Potential Primer: Visual, Auditory and Somatosensory Evoked Potentials in Clinical Diagnosis. Butterworth-Heinemann, Butterworths (1994)

    Google Scholar 

  14. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  15. Palaniappan, R., Raveendran, P., Omatu, S.: EEG Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Networks 13(2), 486–491 (2002)

    Article  Google Scholar 

  16. Basar, E., Eroglu, C.B., Demiralp, T., Schurman, M.: Time and Frequency Analysis of the Brain’s Distributed Gamma-Band System. In: IEEE Eng. in Med. & Bio. Mag., pp. 400–410 (1995)

    Google Scholar 

  17. Snodgrass, J.G., Vanderwart, M.: A Standardized Set of 260 Pictures: Norms for Name Agreement, Image Agreement, Familiarity, and Visual Complexity. J. of Exp. Psychology: Human Learning and Memory 6(2), 174–215 (1980)

    Article  Google Scholar 

  18. Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Research Bulletin 38(6), 531–538 (1995)

    Article  Google Scholar 

  19. Kriss, A.: Recording Technique. In: Halliday, A.M. (ed.) Evoked Potentials in Clinical Testing. Churchill Livingstone (1993)

    Google Scholar 

  20. Rumelhart, D.E., McCelland, J.L.: Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  21. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  22. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proc. Int. J. Conf. on Neural Networks, vol. 3, pp. 21–26 (1990)

    Google Scholar 

  23. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proc. IEEE Int. Conf. on Neural Networks, pp. 586–591 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palaniappan, R., Mandic, D.P. (2005). Energy of Brain Potentials Evoked During Visual Stimulus: A New Biometric?. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_117

Download citation

  • DOI: https://doi.org/10.1007/11550907_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics