Skip to main content

SoftDoubleMinOver: A Simple Procedure for Maximum Margin Classification

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

  • 2886 Accesses

Abstract

The well-known MinOver algorithm is a simple modification of the perceptron algorithm and provides the maximum margin classifier without a bias in linearly separable two class classification problems. DoubleMinOver as a slight modification of MinOver is introduced, which now includes a bias. It is shown how this simple and iterative procedure can be extended to SoftDoubleMinOver for classification with soft margins and with kernels. On benchmarks the extremely simple SoftDoubleMinOver algorithm achieves the same classification performance with the same computational effort as sophisticated Support-Vector-Machine software.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  2. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  3. Le Cun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: Int. Conf. on Artificial Neural Networks, pp. 53–60 (1995)

    Google Scholar 

  4. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: CVPR 1997, pp. 130–136 (1997)

    Google Scholar 

  5. Schölkopf, B.: Support vector learning (1997)

    Google Scholar 

  6. Friess, T., Cristianini, N., Campbell, C.: The kernel adatron algorithm: a fast and simple learning procedure for support vector machine. In: Proc. 15th International Conference on Machine Learning (1998)

    Google Scholar 

  7. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classifier design. IEEE-NN 11, 124–136 (2000)

    Google Scholar 

  9. Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3), 361–387 (2002)

    Article  MATH  Google Scholar 

  10. Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural networks. J. Phys. A 20, 745–752 (1987)

    Article  MathSciNet  Google Scholar 

  11. Martinetz, T.: Minover revisited for incremental support-vector-classification. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 187–194. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  13. King, R., Feng, C., Shutherland, A.: Statlog: comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence 9, 259–287 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinetz, T., Labusch, K., Schneegaß, D. (2005). SoftDoubleMinOver: A Simple Procedure for Maximum Margin Classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_48

Download citation

  • DOI: https://doi.org/10.1007/11550907_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics