Abstract
The well-known MinOver algorithm is a simple modification of the perceptron algorithm and provides the maximum margin classifier without a bias in linearly separable two class classification problems. DoubleMinOver as a slight modification of MinOver is introduced, which now includes a bias. It is shown how this simple and iterative procedure can be extended to SoftDoubleMinOver for classification with soft margins and with kernels. On benchmarks the extremely simple SoftDoubleMinOver algorithm achieves the same classification performance with the same computational effort as sophisticated Support-Vector-Machine software.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Le Cun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: Int. Conf. on Artificial Neural Networks, pp. 53–60 (1995)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: CVPR 1997, pp. 130–136 (1997)
Schölkopf, B.: Support vector learning (1997)
Friess, T., Cristianini, N., Campbell, C.: The kernel adatron algorithm: a fast and simple learning procedure for support vector machine. In: Proc. 15th International Conference on Machine Learning (1998)
Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classifier design. IEEE-NN 11, 124–136 (2000)
Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3), 361–387 (2002)
Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural networks. J. Phys. A 20, 745–752 (1987)
Martinetz, T.: Minover revisited for incremental support-vector-classification. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 187–194. Springer, Heidelberg (2004)
Cristianini, N., Shawe-Taylor, J.: Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)
King, R., Feng, C., Shutherland, A.: Statlog: comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence 9, 259–287 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martinetz, T., Labusch, K., Schneegaß, D. (2005). SoftDoubleMinOver: A Simple Procedure for Maximum Margin Classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_48
Download citation
DOI: https://doi.org/10.1007/11550907_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)