Skip to main content

A Continuous Weighted Low-Rank Approximation for Collaborative Filtering Problems

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

  • 1906 Accesses

Abstract

Collaborative filtering is a recent technique that recommends products to customers using other users’ preference data. The performance of a collaborative filtering system generally degrades when the number of customers and products increases, hence the dimensionality of filtering database needs to be reduced. In this paper, we discuss the use of weighted low rank matrix approximation to reduce the dimensionality of a partially known dataset in a collaborative filtering system. Particularly, we introduce a projected gradient flow approach to compute a weighted low rank approximation of the dataset matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azar, Y., Fiat, A., Karlin, A.R., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (2001)

    Google Scholar 

  2. Berry, M.W., Dumais, S.T., O’Brian, G.W.: Using linear algebra for intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Proceedings of 15th International conference on Machine Learning (1998)

    Google Scholar 

  4. Chu, M.T., Del Buono, N., Lopez, L., Politi, T.: On the Low Rank Approximation of Data on the Unit Sphere. To appear on SIAM Journal on Matrix Analysis (2004)

    Google Scholar 

  5. Del Buono, N., Politi, T.: A continuous technique for the Weighted Low-Rank Approximation Problem. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 988–997. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval 4, 133–151 (2001)

    Article  MATH  Google Scholar 

  7. Linden, G., Smith, B., York, J.: Amazon.com Recommendations - Item to Item Collaborative Filtering. IEEE Internet Computing, 76–80 (2003)

    Google Scholar 

  8. Pryor, M.: The effects of singular value decomposition on collaborative filtering. Dartmounth College CS, Technical Report, PCS-TR98-338 (1998)

    Google Scholar 

  9. Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897. Springer, Heidelberg (2006)

    Google Scholar 

  10. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender system- A case study

    Google Scholar 

  11. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in E-Commerce. In: Proceedings of ACM E-Commerce 1999 Conference (1999)

    Google Scholar 

  12. Srebro, N., Jaakkola, T.: Weighted Low-Rank Approximations. In: Proceedings of Twentieth International Conference on Machine Learning (ICML 2003), Washington DC (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Del Buono, N., Politi, T. (2005). A Continuous Weighted Low-Rank Approximation for Collaborative Filtering Problems. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_5

Download citation

  • DOI: https://doi.org/10.1007/11551188_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics