Abstract
Collaborative filtering is a recent technique that recommends products to customers using other users’ preference data. The performance of a collaborative filtering system generally degrades when the number of customers and products increases, hence the dimensionality of filtering database needs to be reduced. In this paper, we discuss the use of weighted low rank matrix approximation to reduce the dimensionality of a partially known dataset in a collaborative filtering system. Particularly, we introduce a projected gradient flow approach to compute a weighted low rank approximation of the dataset matrix.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azar, Y., Fiat, A., Karlin, A.R., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (2001)
Berry, M.W., Dumais, S.T., O’Brian, G.W.: Using linear algebra for intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)
Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Proceedings of 15th International conference on Machine Learning (1998)
Chu, M.T., Del Buono, N., Lopez, L., Politi, T.: On the Low Rank Approximation of Data on the Unit Sphere. To appear on SIAM Journal on Matrix Analysis (2004)
Del Buono, N., Politi, T.: A continuous technique for the Weighted Low-Rank Approximation Problem. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 988–997. Springer, Heidelberg (2004)
Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval 4, 133–151 (2001)
Linden, G., Smith, B., York, J.: Amazon.com Recommendations - Item to Item Collaborative Filtering. IEEE Internet Computing, 76–80 (2003)
Pryor, M.: The effects of singular value decomposition on collaborative filtering. Dartmounth College CS, Technical Report, PCS-TR98-338 (1998)
Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897. Springer, Heidelberg (2006)
Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender system- A case study
Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in E-Commerce. In: Proceedings of ACM E-Commerce 1999 Conference (1999)
Srebro, N., Jaakkola, T.: Weighted Low-Rank Approximations. In: Proceedings of Twentieth International Conference on Machine Learning (ICML 2003), Washington DC (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Del Buono, N., Politi, T. (2005). A Continuous Weighted Low-Rank Approximation for Collaborative Filtering Problems. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_5
Download citation
DOI: https://doi.org/10.1007/11551188_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28757-5
Online ISBN: 978-3-540-28758-2
eBook Packages: Computer ScienceComputer Science (R0)