Abstract
In this paper an intrusion detection algorithm based on GP ensembles is proposed. The algorithm runs on a distributed hybrid multi-island model-based environment to monitor security-related activity within a network. Each island contains a cellular genetic program whose aim is to generate a decision-tree predictor, trained on the local data stored in the node. Every genetic program operates cooperatively, yet independently by the others, by taking advantage of the cellular model to exchange the outmost individuals of the population. After the classifiers are computed, they are collected to form the GP ensemble. Experiments on the KDD Cup 1999 Data show the validity of the approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The third international knowledge discovery and data mining tools competition dataset. In: kdd 1999 cup (1999), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transaction on Evolutionary Computation 6(5), 443–462 (2002)
Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Folino, G., Pizzuti, C., Spezzano, G.: A cellular genetic programming approach to classification. In: Proc. of the Genetic and Evolutionary Computation Conference GECCO 1999, Orlando, Florida, July 1999, pp. 1015–1020. Morgan Kaufmann, San Francisco (1999)
Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel genetic programming. IEEE Transaction on Evolutionary Computation 7(1), 37–53 (2003)
Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proceedings of the 13th Int. Conference on Machine Learning, pp. 148–156 (1996)
Lu, W., Traore, I.: Detecting new forms of network intrusion using genetic programming. In: Proc. of the Congress on Evolutionary Computation CEC 2003, pp. 2165–2173. IEEE Press, Los Alamitos (2003)
Mukkamala, S., Sung, A.H., Abraham, A.: Modeling intrusion detection systems using linear genetic programming approach. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 633–642. Springer, Heidelberg (2004)
Quinlan, J.R.: Bagging, boosting, and c4.5. In: Proceedings of the 13th National Conference on Artificial Intelligence AAAI 1996, pp. 725–730. MIT Press, Cambridge (1996)
Song, D., Heywood, M.I., Zincir-Heywood, A.N.: A linear genetic programming approach to intrusion detection. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2325–2336. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Folino, G., Pizzuti, C., Spezzano, G. (2005). GP Ensemble for Distributed Intrusion Detection Systems. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_6
Download citation
DOI: https://doi.org/10.1007/11551188_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28757-5
Online ISBN: 978-3-540-28758-2
eBook Packages: Computer ScienceComputer Science (R0)