Abstract
A multi-classifier formed by specialised classifiers for noise produced by an image is shown in this work. A study has been carried out in the case of structure noisy images. Classifiers based on neighbourhood criteria are used in this work, the zoning global feature and the Euclidean distance too. The experiments have been carried out with images of typewritten digits, taken from forms of the Bank of Spain. Trying to obtain a strong database to support the experiments, we have added noise to the images of the digits. The recognition rate improves from 64.58% to 96.18%.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Whichello, A.P., Yan, H.: Linking broken character borders with variable sized masks to improve recognition. Pattern Recognition 29(8), 1429–1435 (1996)
Rodriguez, C., Muguerza, M., Navarro, M., Zárate, A., Martín, J.I., Pérez, J.M.: A Two-Stage Classifer for Broken and Blurred Digits in Forms. In: ICPR 1998 Brisbane, Australia, vol. 2, pp. 1101–1105 (1998)
Omachi, S., Sun, F.H.A.: A Noise-Adaptive Discriminant Function and its Application to Blurred Machine-Printed Kanji Recognition. IEEE Transactions PAMI 22(3), 314–319 (2000)
Kittler, J., Hated, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions PAMI 20(3), 226–239 (1998)
Rodriguez, C., Soraluze, I., Muguerza, J., Martín, J.I., Álvarez, G.: Hierarchical Classifiers based on neighbourhood criteria with Adaptive Computational Cost. Pattern Recognition 35(12), 2761–2769 (2002)
Alpaydin, E., Kaynak, C., Alimoglu, F.: Cascading Multiple Classifiers and representations for Optical and Pen-Based Handwritten Digit Recognition. In: 7th IWFHR Amsterdam, pp. 453–462 (2000)
Ho, T.K., Hull, J.J., Srihari, S.: Decision Combination in Multiple Classifier Systems. IEEE Transactions PAMI 16(1), 66–75 (1994)
Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 36(1-2), 105–139 (1999)
Aksela, M., Girdziusas, R., Laaksonen, J., Oja, E., Kangas, J.: Class-Confidence Critic Combining. In: 8th IWFHR Ontario, Canada, pp. 201–206 (2002)
Ha, T.M., Bunke, H.: Off-line, Handwritten Numeral Recognition by Pertubation Method. IEEE Transactions PAMI 19(5), 535–539 (1997)
Erp, M.v., Vuurpijil, L., Shomaker, L.: An overview and comparison of voting methods for pattern recognition. In: 8th IWFHR Ontario, Canada, pp. 195–200 (2002)
Cappelli, R., Maio, D., Maltoni, D.: A Multi-Classifier Approach to Fingerprint Classification. Pattern Analysis & Applications 5(2), 136–144 (2002)
Grim, J.Ã., Kittler, J., Pudil, P., Somol, P.: Multiple Classifier Fusion in Probabilistic Neural Networks. Pattern Analysis & Applications 5(2), 221–233 (2002)
Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. I. C. S. Press (1991)
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)
Haralick, R.M., Stenberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions PAMI 9(4), 532–550 (1987)
Serra, J.: Image Analisys and Mathematical Morphology. L. Academic Press, London (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cortes, A., Boto, F., Rodriguez, C. (2005). Noisy Digit Classification with Multiple Specialist. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_66
Download citation
DOI: https://doi.org/10.1007/11551188_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28757-5
Online ISBN: 978-3-540-28758-2
eBook Packages: Computer ScienceComputer Science (R0)