Skip to main content

Distributed Multi-robot Localization Based on Mutual Path Detection

  • Conference paper
KI 2005: Advances in Artificial Intelligence (KI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3698))

Included in the following conference series:

  • 713 Accesses

Abstract

This paper presents a new algorithm for the problem of multi-robot localization in a known environment. The approach is based on the mutual refinement by robots of their beliefs about the global poses, whenever they detect each other’s paths. In contrast to existing approaches in the field the detection of robots (e.g. by cameras) by each other is not required any more. The only requirement is the ability of robots to communicate with each other. In our approach the robots try to detect the paths of other robots by comparing their own perception sensor information to that “seen” by other robots. This way the relative poses of the robots can be determined, which in turn enables the exchange of the beliefs about the global poses. Another advantage of our algorithm is that it is not computationally more complex than the conventional single robot algorithms. The results obtained by simulations show a substantial reduction of the localization time in comparison to single robot approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doucet, A., de Freitas, J.F.G., Gordon, N.J. (eds.): Sequential Monte Carlo Methods In Practice. Springer, New York (2001)

    MATH  Google Scholar 

  2. Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A.K. Peters, Ltd., Wellesley (1996)

    MATH  Google Scholar 

  3. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1-2) (2000)

    Google Scholar 

  4. Cox, I.: Blanche - an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2) (1991)

    Google Scholar 

  5. Doucet, A.: On sequential simulation-based methods for Bayesian filtering. Technical Report CUED/F-INFENGS/TR 310, Cambridge University, Department of Engineering, Cambridge, UK (1998)

    Google Scholar 

  6. Doucet, A., de Freitas, J.F.G., Murphy, K., Russel, S.: Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proc. of the Conference on Uncertainty in Artificial Intelligence, UAI (2000)

    Google Scholar 

  7. Ferrein, A., Fritz, C., Lakemeyer, G.: Allemaniacs 2004 team description (2004), http://robocup.rwth-aachen.de

  8. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: Efficient position estimation for mobile robots. In: Proc. of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999) (1999)

    Google Scholar 

  9. Fox, D., Burgard, W., Kruppa, W., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Autonomous Robotics, Special Issue on Heterogeneous Multi-Robot Systems 8(3), 325–344 (2000)

    Google Scholar 

  10. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research (11), 391–427 (1999)

    Google Scholar 

  11. Fox, D., Ko, J., Stewart, B., Konolige, K.: The revisiting problem in mobile robot map building: A hierarchical Bayesian approach. In: Proc. of the Conference on Uncertainty in Artificial Intelligence (2003)

    Google Scholar 

  12. Howard, A., Mataric, M.J., Sukhatme, G.S.: Localization for mobile robot teams: A distributed mle approach. In: Proc. of the 8-th International Symposium in Experimental Robotics, ISER 2002 (2002)

    Google Scholar 

  13. Jensen, A., la Cour-Harbo, A.: Ripples in Mathematics: the Discrete Wavelet Transform. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  14. Kaelbling, L.P., Cassandra, A.R., Kurien, J.A.: Acting under uncertainty: Discrete Bayesian models for mobile robot navigation. In: Proc. of the IEEE/RSJ Internatinal Conference on Intelligent Robots and Systems, IROS (1996)

    Google Scholar 

  15. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision theoretic approach to multi-robot mapping and exploration. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  16. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Autonomous Robots 8(1), 43–52 (2000)

    Article  Google Scholar 

  17. Liu, J., Chen, R.: Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93, 1032–1044 (2001)

    Article  Google Scholar 

  18. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. In: Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, pp. 935–938 (1994)

    Google Scholar 

  19. Montemerlo, M., Thrun, S.: Simultaneous localization and mapping with unknown data association using fastslam. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA (2003)

    Google Scholar 

  20. Nourbaksh, I., Powers, R., Birchfield, S.: Dervish an office-navigating robot. AI Magazine 16(2) (1995)

    Google Scholar 

  21. Pitt, M., Shephard, N.: Filtering via simulation: auxiliary particle filter. Journal of the American Statistical Association 94, 590–599 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roumeliotis, S.I., Bekey, G.A.: Collective localization: A distributed kalman filter approach. In: Proc. of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1080–1087 (2000)

    Google Scholar 

  23. Rubin, D.B.: Using sir algorithm to simulate posterior distributions. In: Bernanrdo, M.H., van De Groot, K.M., Lindley, D.V., Smith, A.F.M. (eds.) Bayesian Statistics 3. Oxford University Press, Oxford (1998)

    Google Scholar 

  24. Simmons, R., Koenig, S.: Probabilistic robot navigation in partially observable environments. In: Proc. of the International Joint Conference on Artificial Intelligence, IJCAI (1997)

    Google Scholar 

  25. Thrun, S.: A probabilistic online mapping for teams of mobile robots. International Journal of Robotics Research 20(5) (2001)

    Google Scholar 

  26. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amiranashvili, V., Lakemeyer, G. (2005). Distributed Multi-robot Localization Based on Mutual Path Detection. In: Furbach, U. (eds) KI 2005: Advances in Artificial Intelligence. KI 2005. Lecture Notes in Computer Science(), vol 3698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551263_23

Download citation

  • DOI: https://doi.org/10.1007/11551263_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28761-2

  • Online ISBN: 978-3-540-31818-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics