Skip to main content

A New n-Ary Existential Quantifier in Description Logics

  • Conference paper
KI 2005: Advances in Artificial Intelligence (KI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3698))

Included in the following conference series:

  • 760 Accesses

Abstract

Motivated by a chemical process engineering application, we introduce a new concept constructor in Description Logics (DLs), an n-ary variant of the existential restriction constructor, which generalizes both the usual existential restrictions and so-called qualified number restrictions. We show that the new constructor can be expressed in \(\mathcal{ALCQ}\), the extension of the basic DL \(\mathcal{ALC}\) by qualified number restrictions. However, this representation results in an exponential blow-up. By giving direct algorithms for \(\mathcal{ALC}\) extended with the new constructor, we can show that the complexity of reasoning in this new DL is actually not harder than the one of reasoning in \(\mathcal{ALCQ}\). Moreover, in our chemical process engineering application, a restricted DL that provides only the new constructor together with conjunction, and satisfies an additional restriction on the occurrence of roles names, is sufficient. For this DL, the subsumption problem is polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\)-envelope. In: Proc. 19th Int. Joint Conf. on Artificial Intelligence (2005) (to appear)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Baader, F., Hanschke, P.: Extensions of concept languages for a mechanical engineering application. In: Ohlbach, H.J. (ed.) GWAI 1992. LNCS, vol. 671. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proc. 16th Int. Joint Conf. on Artificial Intelligence (1999)

    Google Scholar 

  5. Baader, F., Lutz, C., Karabaev, E., Theißen, M.: A new n-ary existential quantifier in description logics. LTCS-Report 05-08, Theoretical Computer Science, TU Dresden, Germany (2005), See http://lat.inf.tu-dresden.de/research/reports.html

  6. Baader, F., Milicic, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description logics and action formalisms for reasoning about web services. LTCS-Report 05-02, Theoretical Computer Science, TU Dresden, Germany (2005), See http://lat.inf.tu-dresden.de/research/reports.html

  7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: Proc. 16th Eur. Conf. on Artificial Intelligence (2004)

    Google Scholar 

  9. Calvanese, D., Lenzerini, M., Nardi, D.: A unified framework for class based representation formalisms. In: Proc. 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning (1994)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Donini, F.: Complexity of reasoning. In: [2] (2003)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  13. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 701. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Hall, P.: On representatives of subsets. The Journal of the London Mathematical Society 10, 26–30 (1935)

    Article  MATH  Google Scholar 

  15. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (1998)

    Google Scholar 

  16. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. J. of the Interest Group in Pure and Applied Logic 8(3), 239–264 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Kolaitis, P.G., Martin, D.M., Thakur, M.N.: On the complexity of the containment problem for conjunctive queries with built-in predicates. In: Proc. 17th ACM Symp. on Principles of Database Systems (1998)

    Google Scholar 

  18. Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence 43, 235–249 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qian, X.: Query folding. In: Proc. 12th IEEE Int. Conf. on Data Engineering (1996)

    Google Scholar 

  21. Reyner, S.W.: An analysis of a good algorithm for the subtree problem. SIAM J. on Computing 6(4), 730–732 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS (LNAI), vol. 1137. Springer, Heidelberg (1996)

    Google Scholar 

  23. Theißen, M., von Wedel, L.: The need for an n-ary existential quantifier in description logics. In: Proc. KI- 2004 Workshop on Applications of Description Logics. CEUR Electronic Workshop Proceedings (2004), http://CEUR-WS.org/Vol-115/

  24. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, Computer Science Department, RWTH Aachen, Germany (2001)

    Google Scholar 

  25. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. 7th Int. Conf. on Very Large Data Bases (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baader, F., Karabaev, E., Lutz, C., Theißen, M. (2005). A New n-Ary Existential Quantifier in Description Logics. In: Furbach, U. (eds) KI 2005: Advances in Artificial Intelligence. KI 2005. Lecture Notes in Computer Science(), vol 3698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551263_4

Download citation

  • DOI: https://doi.org/10.1007/11551263_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28761-2

  • Online ISBN: 978-3-540-31818-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics