

A. Rauber et al. (Eds.): ECDL 2005, LNCS 3652, pp. 426 – 437, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Expression of Z39.50 Supported Search Capabilities by
Applying Formal Descriptions

Michalis Sfakakis and Sarantos Kapidakis

Archive and Library Sciences Department / Ionian University ,
Plateia Eleftherias, Paleo Anaktoro GR-49100 Corfu, Greece

{sfakakis, sarantos}@ionio.gr

Abstract. The wide adoption of the Z39.50 protocol from the Libraries exposes
their abilities to participate in a distributed environment. In spite of the protocol
specification of a unified global access mechanism, query failures and/or incon-
sistent answers are the pending issues when searching many sources due to the
variant or poor implementations. The elimination of these issues heavily de-
pends on the ability of the client to make decisions prior to initiating search re-
quests, utilizing the knowledge of the supported search capabilities of each
source. To effectively reformulate such requests, we propose a Datalog based
description for capturing the knowledge about the supported search capabilities
of a Ζ39.50 source. We assume that the accessible sources can answer some but
possibly not all queries over their data, and we describe a model for their sup-
ported search capabilities using a set of parameterized queries, according to the
Relational Query Description Language (RQDL) specification.

1 Introduction

The Z39.50 client/server information retrieval protocol [1] is widely used in Libraries
electronic communication for searching and retrieving information from a number of
diverse, distributed, heterogeneous and autonomous sources. According to Z39.50 ar-
chitecture, every client can communicate with multiple servers (in parallel or sequen-
tially), and every server can publish many sources not necessarily with the same
structure and search capabilities.

The protocol unifies the access to the sources by providing an abstract record-
based view model, hiding the logical structure and the access methods of the underly-
ing sources. The supported query mechanism, utilizes sets of predefined Access
Points combined with specific attributes (i.e. Attribute Sets), in a number of different
query language specifications (i.e. query types). The general conformance require-
ments of the protocol, for the accomplishment of the standard search primitives, spec-
ify that at least the Access Points defined in the attribute set Bib-1 and the query
Type-1 for the query formulation has to be recognized (although not necessarily im-
plemented).

The consequences of these general conformance requirements are the arbitrary
support of different subsets of the attribute set Bib-1 and also the different capabilities
of the Type-1 query language, in the working Z39.50 environments. When a Z39.50
server does not support a requested Access Point or its attribute type values, the

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 427

response is either a message for unsupported search (query failure), or an arbitrary
substitution of the unsupported attributes with others supported, giving unpredictable
results. The client, can either restrict the available search characteristics to the set of
the lowest common dominants, or reject all the attribute types’ values for the query
term and let each server apply any interpretation for them. Both approaches avoid
query failures, but they either limit the querying facilities of the sources or produce
inconsistent results.

When searching many sources, it is apparent that the elimination of the query fail-
ures and the improvement of the consistency for the answers depend on the client’s
ability: (i) to discover the supported search capabilities of every Z39.50 source and;
(ii) based on this knowledge, to make decisions and probably to transform the query,
prior to initiating search requests. For discovering the information about a Z39.50
source, the conformance to an implementation profile (e.g. Bath [16]) or the Explain
facility of the protocol can be used. The ability of the client to decide and also to de-
termine efficiently the appropriate query transformations heavily depends on the rep-
resentation model used to capture the supported search capabilities of every source.

In the area of databases, a number of methods have been proposed for the represen-
tation and manipulation of the supported search capabilities from sources, based on
formal descriptions [18]. Some of these describe the source’s supported search capa-
bilities by infinite families of queries, using a set of parameterized queries.

This work describes the supported search capabilities of a Z39.50 server at a higher
level than the already existing mechanisms in the family of the Explain services, us-
ing a logic based language. The accessible sources are treated as sources which can
answer some but not all possible queries over their data. Their supported search capa-
bilities are described using a set of parameterized queries according to the Relational
Query Description Language (RQDL) specification [12].

The rest of this work is organized as follows: section 2 presents the related work
concerning the integrated access to multiple sources. Section 3 highlights the Z39.50
protocol, its access model, and describes the issues when searching many sources.
Section 4, after a short introduction to the RQDL basics, presents the description of
the supported search capabilities of a Z39.50 server. Finally, section 5 concludes and
presents a number of interesting issues arrived from this work for further research.

2 Related Work

The problem of providing integrated access to multiple, distributed, heterogeneous
and autonomous sources (databases, or other) has received considerable attention over
a decade in the database research community, and is referred as constructing answers
to queries using logical views. A common information integration architecture, shown
in fig. 1, is based on the Mediators and Wrappers approach [20]. In this architecture,
every source is wrapped by software (wrapper) which translates between the underly-
ing source query language and data model to a common global language and data
model. The Mediator receives queries from a client or a user, which are expressed in
the global language and data model, and translates them into new queries, according
to the wrapper capabilities description, which are sent to the wrappers. The translated
queries are also expressed in the common language and model. Thus a mediator can

428 M. Sfakakis and S. Kapidakis

be thought as a global view of the integrated system, the wrapper as a local view of
the underlying source and the problem of the information integration as constructing
answers to queries using views that represent the capabilities of the information
sources.

M e d i a t o r

W r a p p e r 1

M e d i a t o r

W r a p p e r 2 W r a p p e r 3

S o u r c e 1 S o u r c e 2 S o u r c e 3

U s e r / A p p l i c a t i o n

Fig. 1. Common Information Integration Architecture

Depending on the way that the global and the local views are constructed, there are
two main approaches. The first one is the Local as View (LaV), where the global
schema is defined independently of the local sources schemas. Each source is de-
scribed in terms of the global schema, thus the sources are viewed as materialized
views of the global schema. Using this approach is easy to add new sources in the sys-
tem, but query transformation has exponential time complexity. The second approach
is the Global as View (GaV), where the global schema is defined in terms of the local
schemas. In this approach query transformation can be reduced to rule unfolding, but
when a new source is added to the system, in most cases, the global schema has to be
reconstructed. The Information Manifold [9] and the TSIMMIS [4] are two represen-
tative systems based on the Mediator/Wrapper architecture and implementing the two
deferent view models respectively.

In the literature, a number of formal methods have been proposed [8] dealing with
the problem of answering a query, posed over a global schema on behalf of represen-
tative source schemas. Most of theses methods are based on the assumption that there
is unrestricted access to the participated sources and their data schema, which in many
cases is not a realistic one. Later extensions of the query/view model describe the ac-
cess to sources by infinite families of queries [11, 10]. These approaches view the
sources as processors that can answer some but not all possible queries over their data
and describe those using a set of parameterized queries.

3 Z39.50 Protocol and the Multiple Search Problem Description

The Z39.50 is a state-full protocol based on the client/server model [1, 6]. It defines a
standard manner for the communication between the client and the server, giving
them the ability to interoperate independently of the underlying source structure,
search procedures and computer systems. The system level interoperability is

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 429

approached by the definition of a set of specific services, which is accomplished by
the exchange of specific messages, between the client and the server. For the content
semantics of the published sources (databases), the protocol defines a standard model
in a record-based abstract view, hiding the logical structure of the underlying source.

3.1 Access Model and the Explain Facility

For the implementation of the search primitives, the protocol utilizes the concept of
the abstract Access Point, which the client can only use to query the sources. A server
can supply access to many sources and for every source a different subset of the
global set of Access Points could be supported.

In order to formulate a query, the protocol specifies many different query types
(called Type-0, Type-1, etc.) mainly affecting the syntax of the query. For every
search term, we have to define its characteristics by declaring the Attribute Set it be-
longs to. The Attribute Set defines the valid Access Points (i.e. what entities represent
the search terms) from a specific set of attribute types, the way the system will match
them against the underlying data, and the form in which the terms have been supplied.
For the most commonly used Attribute Set Bib-1, the following attribute types exist:
Use (e.g. Title, Author, etc.), Relation (e.g. Equal, less than, etc.), Position (e.g. First
in field, any position in field, etc.), Structure (e.g. phrase, word, word list, etc.), Trun-
cation (e.g. right, do not truncate, etc.) and Completeness (e.g. complete field, etc.).

According to the protocol, if a target does not support a given attribute list, the tar-
get should fail the search (i.e. query failure) and supply an appropriate diagnostic
message, or the target will substitute it according to the ‘Semantic Action’ value. In
most cases, the vast majority of the running Z39.50 servers ignores the ‘Semantic Ac-
tion’ value and makes an arbitrary substitution of the unsupported attributes, without
informing the client.

The Explain facility is the build-in mechanism in the protocol for a client to obtain
the implementation details of a server. According to the service specification, among
the information which a client can acquire from a server is the list of the supported
Access Points with their Attribute Type combinations for every available source (da-
tabase). The complexity of the implementation of the Explain facility, results to a
small number of existing implementations. The latest approach to solve the problem
of discovering information about a Z39.50 database is the ZeeRex [3], based on the
experiences of the previous approaches. All the Explain approaches publish the sup-
ported access characteristics of a source by enumerating them in a list, without pro-
viding any information on the way they should be used.

3.2 Multiple Search Problem Description and Correlation to SRW

When searching multiple sources, the different implementations of the protocol result
to query failures and/or inconsistent answers, despite of the unified access mechanism
of the protocol. The different implementations mostly differ either to the subsets of
the supported attribute types, or to the supported query language characteristics. The
following examples illustrate some real world circumstances when a client tries to
search many sources.

430 M. Sfakakis and S. Kapidakis

Example 1 (supported access point with different combinations of values for the
other attribute types). Consider two sources, both of them answering queries using the
Access Point (Use attribute) Title. Also both of them could combine this Access Point
with the values Phrase or Word for the attribute type Structure and the last one sup-
ports additionally the value Word List. Finally the supported values for the attribute
type Truncation are Right or Do Not Truncate on any Structure value. In summary the
allowed searches for the Access Point Title by these two sources are:

(S1): Structure-(phrase, word),
 Truncation-(right, do not truncate)
(S2): Structure-(phrase, word, word list),
 Truncation-(right, do not truncate).

 Obviously, Q1 (i.e. Search for the bibliographic records having the Title ‘Data
Structures in Pascal’) is one supported query by both sources:

Q1: (Title, ‘Data Structures in Pascal’)
 (Structure, phrase) (Truncation, do not truncate).

 The query Q2 is not supported by the source S1 due to the unsupported value Word
List for the attribute type Structure.

Q2: (Title, ‘Data Structures’) (Structure, word list)
 (Truncation, do not truncate).

 If a client knows that this query is not supported by the source S1, it could rewrite
Q2 with the equivalent Q3, for the source S1, in a preprocessing step before sending it
to the server, and will achieve the same recall and precision from the answer, as fol-
lows:

Q3: (Title, ‘Data’) (Structure, word)
(Truncation, do not truncate) AND (Title, ‘Structures’)
(Structure, word) (Truncation, do not truncate).

In order to simplify the description of the example, we made the assumption that
both sources support the same value combinations for the remaining attribute types
(i.e. Relation, Position, Completeness), for the used Access Point Title. In this exam-
ple, the assumptions for the attribute types Relation, Position, Completeness were the
values Equal, First in Field, Complete Field, respectively.

Example 2 (unsupported access point). Both sources support the Access Point Au-
thor with the following attribute types:

Access Point: Author
(S1): Structure-(phrase, word), Truncation-(right)
(S2): Structure-(phrase, word), Truncation-(right).

 Also the S2 source additionally supports the Access Point Author Personal Name

Access Point: Author Personal Name
 (S2): Structure-(phrase, word, word list),
 Truncation-(right, do not truncate).

 Q4 is an unsupported query from the source S1, due to the unsupported Access
Point Author Personal Name:

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 431

Q4: (Author Personal Name, ‘Ullman’)
 (Structure, word) (Truncation, right).

 A smart client must take into account the semantics of the Access Points (e.g. Au-
thor Personal Name is a subclass of Author) and transform the query for the S1
source, with less precision than the original one, as follows:

Q5: (Author, ‘Ullman’) (Structure, word)
 (Truncation, right).

Closing the description of the issues concerning the Z39.50 environment, one in-
teresting point is to address how these issues might impact the deployment of the
Search and Retrieve Web Service (SRW) protocol [14]. The SRW is building on the
Z39.50 semantics and retains the main concept of the abstract Access Points used in
the access model of the Z39.50 protocol [15]. Also, in spite of the differences in the
used terminologies (e.g. Z39.50 uses Attribute Sets and Attribute Types, SRW uses
Context Sets and Indexes), the CQL query language used in SRW attempts to com-
bine the simplicity and intuitiveness of expression with the richness of the Z39.50’s
Type -1 query language [5].

Also, the Explain facility of SRW is mandatory and uses the ZeeRex description
for publishing the supported search capabilities of a source. As we saw in section 3.1,
ZeeRex simply lists the supported Access Points without providing a representation
model for effective management and use of the supported search capabilities.

It is apparent that the same issues still exist when searching multiple sources in the
SRW environment, and consistent searching requires the description of the supported
search capabilities of the underling sources in a higher level than the one offered from
the ZeeRex. Also, a higher-level description can be used as a bridge between the mul-
tiple sources when searching them either via the Z39.50 or the SRW protocol.

4 Description of a Z39.50 Server Supported Search Capabilities

In our approach we treat a Z39.50 server as a wrapper for the sources, able to answer
some but not all possible queries over the data of every individual source. We recall
that, all possible elements which can participate in a query are those defined as the
Access Points in an Attribute Set and for every Access Point additional attributes
could define its supplied form and the matching criteria against the data. Also, the
queries are formulated according to a specific language (query type). Finally, an an-
swer to a query is the set of all unique identifiers of the metadata records fulfilling the
search criteria.

4.1 RQDL Basics

As the language for the description of the supported capabilities of the source, we use
the Relational Query Description Language (RQDL). RQDL is a Datalog-based rule
language, first proposed by Papakonstantinou et al. [12], for the description of a wrap-
per’s supported queries. Its main advantages are the ability to describe infinite query
sets and the support of schema-independent descriptions. The language focuses on

432 M. Sfakakis and S. Kapidakis

conjunctive queries and is powerful enough to express the abilities of many sources.
Also, its extended version [19] can describe the set of all conjunctive queries. Due to
the Datalog-based nature of the RQDL, we express the queries using Datalog [17].

We informally introduce the basic characteristics of the description language. The
complete language specification is in [12], and the formal specification for its ex-
tended version is in [19]. An RQDL description is a finite set of RQDL rules, each of
which is a parameterized query (i.e. query template). A query template has a ‘constant
placeholder’ instead of the constant value of an actual query, thus represents many
queries of the same form. For the restrictions on the actual values, which will replace
the constant placeholders, the description language provides metapredicates on them.

4.2 Access Point Templates

We consider that a source wrapped by a Z39.50 server exports a predicate metarec(Id)
representing the set of the unique identifiers of its metadata records. Also the source
exports the predicate of the general form:

property(Id, Pname, Pattribute1, …, Pattributen, Pval).

The relation expressing the meaning of the predicate property contains all the
unique Ids from the metadata records having a property Pname with value that
matches the Pval argument, according to the criteria specified from the additional
Pattributej, j=1,…,n attributes. Thus a valid element making the predicate property
successful is:

property(X, use_Title, rel_Equal, pos_FirstInField,
 str_Phrase, tru_DoNotTruncate,
 com_CompleteField, ‘Data Structures’)

stating that the metadata record X has a property use_Title (i.e. Title) with value that
matches the last argument ‘Data Structures’ according to the matching criteria de-
fined from the third to seventh attributes (i.e. exact match).

From the predicate property we use the argument Pname to describe the supported
Access Point from the source. Also, for the description of the other attribute types Re-
lation, Position, Structure, Truncation and Completeness, defined in the Bib-1 attrib-
ute set, we use the other five arguments Pattributej. The values for the arguments
Pname and Pattributej, in the predicate property, are the constants defined for the at-
tribute types in the Bib-1 attribute set of the Z39.50 protocol. For readability pur-
poses, we combine symbolic names and we do not use the actual numeric values as
specified in the protocol. So, the symbolic name use_Title stands for the pair values
(1, 4) representing the Use (i.e Access Point) attribute type with value 4 (Title).

According to the RQDL specification, in order to define a representation for the set
of the same form queries, in our case the queries concerning an Access Points and its
characteristics, we have to define a query template using ‘constant placeholders’.
These constant placeholders will be replaced in the actual queries with constant val-
ues. Thus, for the description of the family of the queries which use an Access Point
with its attributes, we use the Access Point template:

property(Id, Pname, Pattribute1, …, Pattributen, $Pval).

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 433

The identifiers started with the ‘$’ are the constant place holders (e.g. $Pval) fol-
lowing the syntax of the RQDL. As an example for an Access Point template which
specifies that the source supports the Access Point Title combined with the values
Equal, First in Field, Phrase, Do not Truncate and Complete Field, for the other at-
tribute types Relation, Position, Structure, Truncation and Completeness respectively
(i.e. an exact match for the Title), is the following:

property(Id, use_Title, rel_Equal, pos_FirstInField,
 str_Phrase,tru_DoNotTruncate,
 com_CompleteField, $Pval).

The matching process of an Access Point specification, used in a query, and an Ac-
cess Point template is accomplished by replacing the constant placeholders (e.g.
$Pval) with the corresponding actual constants and then by applying standard unifica-
tion procedures

The number of the Access Point templates we have to write, in order to describe all
possible combinations of the attribute types for a single Access Point, is the product
of (|Paj|+1) for j= 1, …, 5, where Paj is the set of the constant values defined for the
jth attribute type (including the null value). Thus we have 23,936 possible templates
for every Access Point from the Attribute Set Bib-1, according to the protocol specifi-
cation [1]. As described in the semantics of the Attribute Set Bib-1 [2], there is a
number of conflicting or meaningless combinations of Attribute Types which de-
crease the above number of possible templates. E.g., Position with value ‘First in sub-
field’, where ‘subfield’ has no meaning or, Position attribute ‘any position in field’ is
compatible only with the ‘incomplete subfield’ Completeness attribute, etc. In prac-
tice, we expect the number of the required templates to be small, according to wide
adopted implementation profiles like the Bath [16]. As an indication for the order of
magnitude of the number, we refer that there are totally only five attribute type com-
binations for each Access Point Author, Title and Subject in Bath profile (Functional
Area A, Level 1). Thus we need five Access Point Templates only for each of the
three Bath’s Access Points.

According to the protocol, the specification of a query term may omit values for
some attribute types. This leads to unspecified arguments when we construct the
predicate property for the used term in the query. In this case the underscore ‘_’ sym-
bol can be used, and in the unification process it matches with any value in the corre-
sponding argument of the template. When using unspecified arguments, there is a
possibility that the corresponding predicate to the requested query term, will match
with more than one Access Point Templates. For the decision of the matching Access
Point template and in case were only one source is in use, we can make an arbitrary
selection reflecting the intentions of the user and without conflicting with the proto-
col. A more interesting approach, which we have to examine further, is to select the
template by taking into account user preferences limiting the degree of the expansion
or the restriction of the query results. When many sources are involved, the primary
criterion could be the selection of a template supported from all sources, or a common
one after taking into account user preferences for achieving the same semantic
changes for all sources. Both approaches satisfy the consistency of the answers but
they differ on the achieved recall and precision.

434 M. Sfakakis and S. Kapidakis

Using the Access Point Template we can enumerate the supported Access Points
and their attributes by a source. Even if we know that a source supports all the Ac-
cess Points used in the query we may not be able to decide for the support of the
whole query, due to the possibility of unsupported combinations in the query ex-
pressions.

4.3 Query Templates

This section extends the description of the Z39.50 supported search capabilities so
that, we will be able to decide if a template describes a specific class of queries.
Combining the predicates metarec and property, we can write a query requesting all
the metadata records from a source which supports exact Author search, as:

(Q1): answer(X):- metarec(X), property(X, use_Author,
 rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate,com_CompleteField, ‘Ullman’).

A query template (D1), using the RQDL specification, which describes the capa-
bilities of a source that supports only exact Author searches, is the following:

(D1): answer(Id):- metarec(Id), property(Id,
 use_Author, rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pval).

A query is described by a template if each predicate in the query matches one
predicate in the template and vice versa, and also, any metapredicate in the template
evaluates to true when the constant value will replace the constant placeholder. The
order of the predicates does not affect the matching process.

Query (Q1) matches the template of the description (D1), because the predicates
used in the query match the predicates used in the template description and vice versa,
with the following unification assignments: X=Id, $Pval = ‘Ullman’. Thus description
(D1) describes the query (Q1). In case were other Access Points are supported from
the source, in order the description (D1) to describe the whole capabilities (i.e. the set
of all supported queries) we have to supplement D1 with a similar template for every
other supported Access Point.

For the description of large or infinite sets of supported capabilities, we can use re-
cursive rules. RQDL utilizes the concept of the nonterminals (as in context-free
grammars), representing them by identifiers staring with an underscore (_) and a capi-
tal letter. A template containing nonterminals forms a nonterminal template. An ex-
pansion of a query template qt containing nonterminals is obtained by replacing each
nonterminal of qt with one of the nonterminal templates that define it until there is no
nonterminal in qt. Finally, a query template qt containing nonterminals describes a
query q if there is an expansion of qt that describes q.

As an example, let’s consider a source that supports the Access Points referred in
the previous example, and also supports exact matches for the Subject and the Title
Access Points plus any possible combination of them. A representative supported
query by the server could be:

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 435

(Q2): answer(X):- metarec(X), property(X, use_Author,
 rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, ‘Ullman’),
 property(X, use_Author, rel_Equal, pos_FirstInField,
 str_Phrase, tru_DoNotTruncate,
 com_CompleteField, ‘Garcia-Molina’),
 property(X, use_Subject, rel_Equal, pos_FirstInField,
 str_Phrase, tru_DoNotTruncate,
 com_CompleteField, ‘Datalog’),
 property(X, use_Title, rel_Equal, pos_FirstInField,
 str_Phrase, tru_DoNotTruncate,
 com_CompleteField, ‘Database Systems’).

Using the nonterminal templates _Cond and _Cond1, a description for the sup-
ported queries from the server could be:

(D2): answer(Id):- metarec(Id), _Cond(Id)
(NT2.1) _Cond(Id):- _Cond(Id), _Cond1(Id)
(NT2.2) _Cond(Id):- _Cond1(Id)
(NT2.3) _Cond1(Id):- property(Id, use_Title,
 rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pvalue)
(NT2.4) _Cond1(Id):- property(Id, use_Subject,
 rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pvalue)
(NT2.5) _Cond1(Id):- property(Id, use_Author,
 rel_Equal, pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pvalue).

 Also, the (E1) is an expansion of the query template (D2):

(E1): answer(Id):- metarec(Id),
 property(Id, use_Title, rel_Equal,
 pos_FirstInField, str_Phrase,
 tru_DoNotTruncate,com_CompleteField, $Pv1),
 property(Id, use_Subject, rel_Equal,
 pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pv2),
 property(Id, use_Author, rel_Equal,
 pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pv3),
 property(Id, use_Author, rel_Equal,
 pos_FirstInField, str_Phrase,
 tru_DoNotTruncate, com_CompleteField, $Pv4).

We recall that the order of the predicates does not affect the matching process be-
tween the query and the query template. Also, before starting the expansion, all of the
variables of the template are renamed to be unique. This expansion describes the
query (Q2), because the predicates used in the query match the predicates used in the
template (and vice versa) with the unification assignments X=Id, $Pv1 = ‘Database
Systems’, $Pv2 = ‘Datalog’, $Pv3 = ‘Garcia-Molina’, $Pv4 = ‘Ullman’.

436 M. Sfakakis and S. Kapidakis

4.4 Deciding for the Support of a Query

Having an RQDL description of the supported search capabilities of a Z39.50 source,
the next step is to decide if the source is able to answer a given query. We recall that
we express the queries (conjunctive) using the Datalog and also that an RQDL rule is
a Datalog-based rule using constant placeholders in addition to variables and con-
stants. The process of finding a supporting query in an RQDL description is reduced
to the problem of determining whether a conjunctive query is contained in a Datalog
program [11, 12, 19].

The Query Expressibility Decision (QED) [19] and the X-QinP [11] are two ex-
tensions of the classic algorithm for deciding query containment in a Datalog pro-
gram [13, 17]. When the supported capabilities are described using recursive rules,
the query template has an infinite number of expansions. Furthermore, we have to
check the query for one or more matches within the infinite number of expansions
in order to decide if a source is able to answer a query. In this case, a variant of
‘magic set rewriting’ [17] makes the process of deciding the support of a query
more efficient [12].

Closing our approach for the description of a Z39.50 server supported search capa-
bilities, we emphasize the importance of the applicability of the well-studied theory
and algorithms from the area of the deductive databases.

5 Conclusions and Future Research

In this work we have addressed the need for the formal description of the supported
search capabilities of Z39.50 sources, especially when multiple sources have to be
searched. The proposed logic based description enables the client to make decisions
prior to initiating the search requests. Also, the existing Explain family services can
be used complementary to our description by providing input information, when they
are implemented. The accessible sources are treated as sources which can answer
some but not all possible queries over their data. We describe the search capabilities
supported by a source using a set of parameterized queries, according to the Rela-
tional Query Description Language (RQDL) specifications.

From this work, a number of interesting points arrives for future development and
research. Currently, our approach can help the client or a mediator to decide if a query
is directly supported or not by a Z39.50 source (i.e. the server which publishes the
source is able to answer the query as is, without any substitution of any attribute). In
case where the query is not directly supported by a source, a powerful extension will
be the transformation of the query to a different query or a set of queries, so that
(preferably) identical or (otherwise) similar semantics are obeyed. Finding ways to
extend the description templates using characteristics of the underlying data models
and schemata of the sources will improve the overall process of deciding if a source
supports a query, directly or indirectly. Also, the relations among the query language
operations and the correlations between the Access Points hierarchies could really en-
force the transformation procedures, especially when the query can be transformed
only to a similar query.

Expression of Z39.50 Supported Search Capabilities by Applying Formal Descriptions 437

References

1. ANSI/NISO: Z39.50 Information Retrieval: application service definition and protocol
specification: approved May 10, 1995.

2. Attribute Set BIB-1 (Z39.50-1995): Semantics. ftp://ftp.loc.gov/pub/z3950/defs/bib1.txt.
3. An Overview of ZeeRex. 28th August 2002. http://explain.z3950.org/overview/index.html.
4. Chawathe, S., Garcia-Molina, H., Hammer, J., Irelandand, K., Papakonstantinou Y., Ull-

man, J. and Widom, J. The TSIMMIS Project: Integration of Heterogeneous Information
Sources. IPSJ, Tokyo, Japan, October 1994.

5. CQL – Common Query Language, version 1.1, February 2004. Available from:
http://www.loc.gov/z3950/agency/zing/cql.html

6. Finnigan, S., Ward, N. Z39.50 Made Simple. Available from:
 http://archive.dstc.edu.au/DDU/projects/Z3950/zsimple.html.

7. Gill, Tony and Miller Pall. Re-inventing the Wheel? Standards, Interoperability and Digi-
tal Cultural Content. D-Lib Magazine vol. 8:num. 1 (January 2002).

8. Halevy, A. Answering Queries using views: A Survey. The VLDB jour. 10: 270-294
(2001).

9. Kirk, T., Levy, A., Sagiv, Y. and Srivastava, D. The Information Manifold. AAAI Spring
Symposium on Information Gathering, 1995.

10. Levy, A., Rajaraman, A., Ullman, J. Answering Queries Using Limited External Query
Processors. PODS 96, Montreal Quebec Canada.

11. Papakonstantinou Y., Gupta, A. Garcia-Molina, H. Ullman, J. A Query Translation
Scheme for Rapid Implementation of Wrappers. Proceedings of the Conference on Deduc-
tive and Object Oriented Databases, DOOD-95.

12. Papakonstantinou Y., Gupta A., Hass L. Capabilities-Based Query Rewriting in Mediator
Systems. 4th International Conference on Parallel and Distributed Information Systems
(PDIS-96), December 18-20, 1996.

13. Ramakrishnam, R., Sagiv, Y., Ullman, J. and Vardi, M. Proof Tree Transformation Theo-
rems and their Applications. Proc. 8ht ACM Symposium on Principles of Database Sys-
tems, pp. 172-181, 1989.

14. Sanderson, R. A Gentle Introduction to SRW. Available from:
 http://www.loc.gov/z3950/agency/zing/srw/introduction.html

15. SRW – Search/Retrieve Web Service: SRW’s Relationship to Z39.50. January 22, 2004.
Available from: http://www.loc.gov/z3950/agency/zing/srw/z3950.html

16. The Bath Profile: An International Z39.50 Specification for Library Applications and Re-
source Discovery. Available from: http://www.ukoln.ac.uk/interop-focus/bath/current/

17. Ullman, J. Principles of Database and Knowledge-Based Systems, v. I, II. Computer Sci-
ence Press, New York, 1988 & 1989.

18. Ullman, J. Information Integration Using Local Views. LNCS, Proceedings of the 6th In-
ternational Conference on Database Theory, pages 19-40, 1997.

19. Vassalos, V., Papakonstantinou Y. Expressive Capabilities Description Languages and
Query Rewriting Algorithms. Jour. of Logic Programming, vol. 43, number 1, 2000,
75-122.

20. Wiederhold, G. Mediators in the architecture of future information systems. IEEE Com-
puter, 25: 25-49, 1992.

	Introduction
	Related Work
	Z39.50 Protocol and the Multiple Search Problem Description
	Access Model and the Explain Facility
	Multiple Search Problem Description and Correlation to SRW

	Description of a Z39.50 Server Supported Search Capabilities
	RQDL Basics
	Access Point Templates
	Query Templates
	Deciding for the Support of a Query

	Conclusions and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

