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Abstract. The main goal of this tutorial is to review the theory and
design the worst case additive attack (WCAA) for |M|-ary quantization-
based data-hiding methods using as performance criteria the error proba-
bility and the maximum achievable rate of reliable communications. Our
analysis focuses on the practical scheme known as distortion compensa-
tion dither modulation (DC-DM). From the mathematical point of view,
the problem of the worst case attack (WCA) design using probability of
error as a cost function is formulated as the maximization of the aver-
age probability of error subject to the introduced distortion for a given
decoding rule. When mutual information is selected as a cost function,
a solution to the minimization problem should provide such an attack-
ing noise probability density function (pdf) that will maximally decrease
the rate of reliable communications for an arbitrary decoder structure.
The obtained results demonstrate that, within the class of additive at-
tacks, the developed attack leads to a stronger performance decrease for
the considered class of embedding techniques than the additive white
Gaussian or uniform noise attacks.

1 Introduction

Data-hiding techniques aim at reliably communicating the largest possible a-
mount of information under given distortion constraints. Their resistance against
different attacks determine the possible application scenarios. An extensive re-
view of various application of digital data-hiding techniques is given in [21]. The
knowledge of the WCA allows to create a fair benchmark for data-hiding tech-
niques and makes it possible to provide reliable communications with the use of
appropriate error correction codes.

In general, the digital data-hiding can be considered as a game between the
data-hider and the attacker. This three-party two-players game was already in-
vestigated by Moulin and O’Sullivan [12] where two set-ups are analyzed. In the
first one, the host is assumed to be available at both encoder and decoder prior
to the transmission, the so-called private game. In the second one, the host is
only available at the encoder as in Fig. 1, i.e., the public game. The performance
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is analyzed with respect to the maximum achievable rate when the decoder is
aware of the attacking channel and therefore maximum likelihood (ML) decoding
is applied. A similar game-theoretic analysis of the |M|-ary information detec-
tion problem, the so-called zero-rate spread spectrum watermarking problem, is
performed in [11]. As in the previous case, it is assumed that the detector has
the possibility to learn the statistics of the attacking channel.

In both cases [11, 12], the results were obtained under the assumption of con-
tinuous input alphabets. They lead to the conclusion that the optimal attacker
strategy in the class of additive blockwise memoryless attacks corresponds to
the application of the Gaussian test channel from the rate-distortion theory.

The knowledge of the attacking channel at the decoder is not a realistic
case for most practical applications. Somekh-Baruch and Merhav considered the
data-hiding problem in terms of maximum achievable rates and error exponents.
They assumed that the host data is available either at both encoder and decoder
[1] or only at the encoder [16] and supposed that neither encoder nor decoder
is aware of the attacker strategy. In their consideration, the class of potentially
applied attacks is significantly broader than in the previous study case [12] and
includes any conditional pdf that satisfies a certain energy constraint. Although
the solution of the problem is classically presented in terms of the achievable
rate establishing the maximum number of messages |M| that can be reliably
communicated, the error exponents solution is interesting in many practical ap-
plications where the objective is to minimize the probability of error at a given
communications rate.

Quantization-based data-hiding methods have attracted attention in the wa-
termarking community. They are a practical implementation of a binning tech-
nique for channels whose state is non-causally available at the encoder consid-
ered by Gel’fand-Pinsker [8]. Recently it has been also demonstrated [13] that
quantization-based data-hiding performance coincides with the spread-spectrum
(SS) data-hiding at the low-WNR by taking into account the host statistics and
by abandoning the assumption of an infinite image to watermark ratio.

The quantization-based methods have been widely tested against a fixed
channel and assuming that the channel transition pdf is available at the decoder.
A minimum Euclidean distance (MD) decoder is implemented as a low-complex-
ity equivalent of the ML decoder under the assumption of a channel pdf created
by the symmetric extension of a monotonically non-increasing function [2].

It is a common practice in the data-hiding community to measure the perfor-
mance in terms of the error rate for a given decoding rule as well as the maximum
achievable rate of reliable communications. In this tutorial we will analyze the
WCAA using both criteria. We restrict the encoding to the quantization-based
one and the channel to the class of additive attacks only. We assume that the
attacker might be informed of the encoding strategy and also of the decoding one
for the error exponent analysis, while both encoder and decoder are uninformed
of the channel. Furthermore, the encoder is aware of the host image but not of
the attacking strategy.



3

It is important to note that the optimality of the attack critically relies
on the input alphabet even under power-limited attacks. McKellips and Verdu
showed that the additive white Gaussian noise (AWGN) is not the WCAA for
discrete input alphabets such as pulse amplitude modulation in digital communi-
cations [10]. Similar conclusion for data-hiding was obtained by Pérez-González
et al. [14], who demonstrated that the uniform noise attack performs worse than
the AWGN attack for some watermark-to-noise ratios (WNRs). In [15], Pérez-
González demonstrated that the AWGN cannot indeed be the WCAA because of
its infinite support. Vila-Forcén et al. [19] and Goteti and Moulin [9] solved inde-
pendently the min-max problem for distortion-compensated dither modulation
(DC-DM) [3] in terms of probability of error for the fixed decoder, binary signal-
ing, the subclass of additive attacks in data-hiding and detection-formulation,
respectively. The additional difference between the two approaches consists in
the definition of the cost function. While in the former case explicit computa-
tion of the probability of error is performed for the selected class of embedding
strategies, in the latter one the Bhatacharyya bound is exploited in order to
reduce the complexity of the considered game optimization problem. Simultane-
ously, Vila-Forcén et al. [20] and Tzschoppe et al. [18] derived the WCAA for
DC-DM using the mutual information as objective function for additive attacks
and binary signaling.

The goal of this paper is to provide an overview of the WCAA against quan-
tization-based data-hiding techniques, focusing on the core principles and basic
performance measures used in the data-hiding community. We did not attempt to
provide a comprehensive overview of all possible attacking strategies that could
be applied against quantization-based methods. All these classes of attacks are
rather broad for this review and include various geometrical transformation and
signal processing attacks as well as attacks that combine prior information about
scheme design with security leakages revealed by the attacker. The last group is
the most dangerous one besides the fact that it requires some specific information
about the data-hiding technique. The geometrical attacks are quite generic and
can be applied to any data-hiding method disregarding any prior information
about the codebook design. Signal processing attacks are generally based on the
statistical priors about the host data and the watermark. The group of WCAA
conforms to the signal processing attacks and directly exploits the knowledge of
the watermark statistics caused by the structured codebook design. We refer the
interested readers to [23, 24] for more information about attacks classification.
More recent studies [4, 17, 22] address the impact of security leakages in the scope
of information-theoretic analysis for geometrically structured and quantization-
based codebooks and general reversibility of watermark embedding.

This paper aims at establishing the information-theoretic limits of |M|-ary
quantization-based data-hiding techniques and developing a benchmark that can
be used for the fair comparison of different quantization-based methods.

The selection of the distortion compensation parameter α′ (see Section 2.2)
fixes the encoder structure for the quantization-based methods. Although the
optimal α′ can easily be determined when the power of the noise is available at
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the encoder prior to the transmission [6], this is not always feasible for various
practical scenarios. Nevertheless, the availability of the attacking power and of
the attacking pdf is a very common assumption in most data-hiding schemes.
We will demonstrate that for a specific decoder (MD decoder) it is possible to
calculate the optimal α′ independently of the attack variance and pdf for the
block error probability as a cost function.

Notations We use capital letters to denote scalar random variables X, bold
capital letters to denote vector random variables X and corresponding small
letters x and x to denote the realizations of scalar and vector random variables,
respectively. An information message and a set of messages with cardinality
|M| is designated as m ∈ M,M = {1, 2, . . . , |M|}, respectively. A host signal
distributed according to the pdf fX(x) is denoted by X ∼ fX(x); Z ∼ fZ(z),
W ∼ fW(w) and V ∼ fV(v) represents the attack, the watermark and the
received signal, respectively. The step of quantization is equal to ∆ and the
distortion-compensation factor is denoted as α′. The variance of the watermark
is σ2

W and the variance of the attack is σ2
Z . The watermark-to-noise ratio (WNR)

is given by WNR = 10 log10 ξ, where ξ =
σ2

W

σ2

Z

. The set of natural numbers is

denoted as N and IN denotes the N ×N identity matrix.

2 Problem Formulation

2.1 Data-Hiding Formulation of the Gel’fand-Pinsker Problem

The Gel’fand-Pinsker problem [8] has been recently revealed as the appropriate
theoretical framework of data-hiding communications with side information. The
Gel’fand-Pinsker data-hiding set-up is presented in Fig. 1. The random variable
X stands for the host signal, which is independent and identically distributed
(i.i.d.) according to p(x) =

∏N

i=1 p(xi) and available non-causally at the encoder.
The encoder is a mapping φ : M×XN ×K → WN , where the key K ∈ K,K =
{1, 2, . . . , |K|}. The stego data Y is obtained using the embedding mapping:
ϕ : WN × XN → YN . The decoder estimates the embedded message as ψ :
VN ×K → M. According to this scheme, a key is available at both encoder and
decoder. Nevertheless, key management is outside of the scope of this paper and
will not be considered further.

Encoder φ Embedder ϕ fV|Y(v|y)

DMC

Decoder ψ

X

K

m W Y V m̂

Fig. 1. Gel’fand-Pinsker data-hiding set-up

Two constraints apply to the Gel’fand-Pinsker in the data-hiding scenario:
the embedding and the channel distortion constraints [12]. Let d(·, ·) be a non-
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negative function and σ2
W , σ2

Z be two positive numbers, the embedder and the
channel are said to satisfy the embedding and channel distortion constraints if:

∑

x∈XN

∑

y∈YN

d(x,y)fX,Y(x,y) ≤ σ2
W ;

∑

y∈YN

∑

v∈VN

d(y,v)fY,V(y,v) ≤ σ2
Z , (1)

where d(x,y) = 1
N

∑N

i=1 d(xi, yi).
Costa considered the Gel’fand-Pinsker problem for the i.i.d.

Gaussian case and mean square error distance [5]. The embedder ϕ produces
Y = W + X, X ∼ N (0, σ2

XIN ) and the channel output is obtained as: V =
X+W+Z, where Z ∼ N (0, σ2

ZIN ). The estimate of the message m̂ is obtained
at the decoder as in the Gel’fand-Pinsker set-up.

2.2 Quantization-Based Data-Hiding Techniques:

Aiming at reducing the Costa codebook exponential complexity, a number of
practical data-hiding algorithms exploit structured codebooks instead of random
ones. The most famous discrete approximations of Costa problem are known as
DC-DM [3] and scalar Costa scheme (SCS) [6]. The structured codebooks are
designed using quantizers (or lattices [7]) in order to achieve host interference
cancellation. In the case of DC-DM, the stego data is obtained as follows:

φDC-DM(m,x, α′) = y = x+ α′(Qm(x) − x), (2)

where Qm(·) denotes a vector or scalar quantizer for the message m and 0 <

α′ ≤ 1 is the analogue of the Costa optimization parameter α. If α′ = 1, the
DC-DM simplifies to the DM: φDM(m,x) = φDC-DM(m,x, 1).

3 Error Probability as a Cost Function

When the average error probability is selected as a cost function, we formulate
the problem of Fig. 1 as:

P
∗(N)
B = min

φ,ψ
max

fV |Y (·|·)
PB(φ, ψ, fV |Y (·|·)). (3)

The error probability depends on the particular encoder/decoder pair (φ, ψ) and
the attacking channel fV|Y(v|y), i.e., PB(φ, ψ, fV |Y (v|y)) = Pr[m̂ 6= m|M = m].
Here, we assume that the attacker knows both encoder and decoder strategies
and selects its attacking strategy accordingly. Both encoder and decoder choose
their strategy without knowing the attack in advance. Although this is a very
conservative set-up, it is also important for various practical scenarios.

The more advantageous set-up for the data-hider is based on the assumption
that the decoder selects its strategy knowing the attacker choice:

min
φ

max
fV |Y (·|·)

min
ψ
PB(φ, ψ, fV |Y (·|·)). (4)
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Here, the attacker knows only the encoding function, which is fixed prior to the
attack, and the decoder is assumed to be aware of the attack pdf.

In the general case, Somekh-Baruch and Merhav [1] have shown that the
following inequalities apply for the above scenarios :

min
φ,ψ

max
fV |Y (·|·)

PB(φ, ψ, fV |Y (·|·)) ≥ min
φ

max
fV |Y (·|·)

min
ψ
PB(φ, ψ, fV |Y (·|·)) (5)

= min
φ

max
fV |Y (·|·)

PB(φ, ψML, fV |Y (·|·)), (6)

where (6) assumes that the decoder is aware of the attacking pdf and therefore
the minimization at the decoder results in the optimal ML decoding strategy
ψML. Using (6) one can write:

min
φ

max
fV |Y (·|·)

PB(φ, ψMD, fV |Y (·|·)) ≥ min
φ

max
fV |Y (·|·)

PB(φ, ψML, fV |Y (·|·)), (7)

with equality if, and only if, the MD decoder coincides with the optimal ML
decoder. In the class of additive attacks, the attacking channel transition pdf is
only determined by the pdf of the additive noise fZ(z). Finally, in this analysis
we assume independence of the error probability on the quantization bin where
the received signal v lies (because the error decision region Rm has periodical
structure and the host pdf fX(x) is assumed to be asymptotically constant within
each quantization bin).

The problem (3) implies that the attacker might know both encoding and
decoding strategy. Here, we target finding the WCAA pdf and the optimum
fixed encoding strategy independently of the particular attacking case which
guarantees reliable communications and provides an upper bound on the error
probability.

3.1 Additive White Gaussian Noise Attack

The probability of error is determined using the equivalent noise pdf given by
the convolution of the self-noise (a delta in the DM case and a uniform in the
DC-DM one) with the attacking noise. The analytical expression for the error
probability does not exist, and it is evaluated numerically. The error probability
for the DM and the DC-DM under the AWGN attack is depicted in Fig. 2.

3.2 Uniform Noise Attack

It was shown [14] that the uniform noise attack produces higher error probability
than the AWGN attack for some particular WNR in the binary signaling case.
This fact contradicts the common belief that the AWGN is the WCAA for all
data-hiding methods since it has the highest differential entropy among all pdfs
with bounded variance.

As for the AWGN attacking case, we assume that the MD decoder is used
and the probability of error is calculated as the integral of the equivalent noise
pdf over the error region. The corresponding performance of the DC-DM under
the uniform noise attack is presented in Fig. 3. Since we are assuming fixed
decoder, the error probability for the binary case can be higher than 0.5.
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Fig. 2. Error probability analysis results for the AWGN attack case: (a) binary signal-
ing and (b) quaternary signaling
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Fig. 3. Error probability for the uniform noise attack case: (a) binary signaling and
(b) quaternary signaling

3.3 The Worst Case Additive Attack

The problem of the WCAA for digital communications based on binary pulse
amplitude modulation (PAM) was considered in [10] using the error probability
under attack power constraint. In this paper, the problem of the WCAA is
addressed for the quantization-based data-hiding methods.

The problem (4) for the DM with the fixed MD decoder is given by:

min
α′

max
fZ(·)

PB(α′, ψMD, fZ(·)), (8)

where the encoder is optimized over all α′ such that 0 < α′ ≤ 1, and the at-
tacker selects the attack pdf fZ(·) maximizing the error probability PB . Since
the encoder must be fixed in advance in the practical set-ups, we will first solve
the above min-max problem as an internal maximization problem for a given
encoder/decoder pair:

max
fZ(·)

PB(α′, ψMD, fZ(·)) = max
fZ(·)

∫

Rm

fV (v|M = m)dv, (9)

where 0 < α′ ≤ 1, subject to the constraints:

∫ ∞

−∞

fZ(z)dz = 1,

∫ ∞

−∞

z2fZ(z)dz ≤ σ2
Z , (10)

where the first constraint follows from the pdf definition and σ2
Z constrains the

attack power. The obtained error probabilities are depicted in Fig. 4, where the
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Fig. 4. WCAA error probability optimization results: (a) binary signaling and (b)
quaternary signaling

maximum is equal to 1 since we are assuming that the decoder is fixed (MD
decoder) and it is completely known to the attacker. In a different decoding case
when it is possible to invert the bit values, the maximum error probability will
be equal to 0.5.

We approximate the performance of the WCAA by a so-called 3 − δ attack
whose pdf is presented in Fig. 5. The 3− δ attack provides a simple and power-
ful attacking strategy, which approximates the performance of the WCAA and
might be used for testing different data-hiding algorithms. In order to demon-
strate how accurate this approximation is, one needs to compare the average
error probability caused by this attack versus the numerically obtained results.

−T 0 T

A A
1 − 2A

Fig. 5. 3 − δ attack, 0 ≤ A ≤ 0.5

The corresponding performance for the DM and the DC-DM under the 3-δ
attack is presented in Fig. 6. The comparison between Fig. 4 and Fig. 6 demon-
strates that the 3-δ attack produces asymptotically the same error probability
as the optimization results. The presented results (Fig. 2, Fig. 3 and Fig. 4)
demonstrate that the gap between the AWGN attack and the real worst case
attack can be larger than 5dB in terms of the WNR.

The error probability as a function of the distortion compensation parameter
for a given WNR demonstrates that the 3 − δ attacking scheme is worse than
either the uniform or Gaussian ones (Fig. 7). If the noise attack is known, it is
possible to select such an α′ that minimizes the error probability for the given
WNR in Fig. 7. For example, if WNR = 0dB and Gaussian noise is applied,
the optimal distortion compensation factor is α′ = 0.53, resulting in PB = 0.23.
Nevertheless, the encoder and the decoder are in general uninformed of the
attacking strategy in advance and a mismatch in the attacking scheme may
cause a bit error probability3 of 1, while for α′ = 0.66 the maximum bit error
probability is PB = 0.33.

3 In general the maximum bit error probability is equal to 1 for the fixed MD decoder.



9

10
-2

10
-1

10
0

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′
= 1

α′
= 0.8

α′
= 0.6

(a)

10
-2

10
-1

10
0

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′
= 1

α′
= 0.9

α′
= 0.8

(b)

Fig. 6. Error probability analysis results for the 3− δ attack case: (a) binary signaling
and (b) quaternary signaling
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Fig. 7. Error probability comparison as a function of the distortion compensation
parameter for the 3 − δ, Gaussian and uniform attacks and binary signaling: (a)
WNR = 0dB, (b) WNR = 10dB

In order to find the optimal compensation parameter value that will allow
the data-hider to upper bound the error probability introduced by the WCAA,
we analyzed the error probability given by the 3-δ attack. Surprisingly, it was

found that, independently of the operational WNR, α′ = α′
opt = 2(|M|−1)

2|M|−1 guar-

antees the lowest error probability of the analyzed data-hiding techniques under
the WCAA (Fig. 8). Having this bound on the error probability, it is possible to
guarantee reliable communications using proper error correction codes. There-
fore, one can select such a fixed distortion compensation parameter α′ = α′

opt

at the uninformed encoder and the MD decoder, which guarantees a bounded
error probability. Substituting α′ = α′

opt into the error probability, one obtains
the upper bound on the error probability:

PB(α′
opt) =

1

6
|M|(|M| − 1)ξ−1. (11)

4 Mutual Information as a Cost Function

The analysis of the WCAA with mutual information as a cost function is crucial
for the fair evaluation of quantization-based data-hiding techniques. It provides
the information-theoretic performance limit (in terms of achievable rate of re-
liable communications) that can be used for benchmarking of different practi-
cal robust data-hiding algorithms. Moulin et al. [12] considered the maximum
achievable rate in the Gel’fand-Pinsker set-up as a max-min problem:

C = maxφ minfV |Y (·|·) [I(U ;V ) − I(U ;X)] , (12)
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Fig. 8. Error probability analysis results as a function of the distortion compensation
parameter α′ for the 3 − δ attack: (a) binary signaling and (b) quaternary signaling

for a blockwise memoryless attack, the embedder distortion constraint σ2
W and

the attacker distortion constraint σ2
Z . In the case of quantization-based methods

the mutual information is measured between the communicated message M and
the channel output V [15] and the above problem is given by:

maxφ minfV |Y (·|·) Iφ,fV |Y (·|·)(M ;V ′). (13)

where V ′ = Q∆(V ) − V , since it was shown in [15] that modulo operation does
not reduce the mutual information between V and M if the host is assumed to
be flat within the quantization bins.

Rewriting the inequalities (5)–(6) for the mutual information we have:

max
φ

min
fV |Y (·|·)

Iφ,fV |Y (·|·)(M ;V ′) ≤ max
φ

Iφ,f̃V |Y (·|·)(M ;V ′), (14)

with equality if, and only if, the fixed attack f̃V |Y (·|·) coincides with the WCAA.
Thus, the decoder in Fig. 1 is not fixed and we assume that the channel attack
pdf fV |Y (·|·) is available at the decoder (informed decoder) and, consequently,
ML decoding is performed. Under previous assumptions of quantization-based
embedding and additive attack, it is possible to rewrite (13) as:

max
α′

min
fZ(·)

Iα′,fZ(·)(M ;V ′). (15)

Assuming equiprobable symbols, one obtains [15, 20]:

Iα′,fZ(·)(M ;V ′) = D
(

fV ′|M (v′|M = 1)||fV ′(v′)
)

, (16)

where D(·||·) denotes the Kullback-Leibler distance (KLD). The next section is
dedicated to the analysis of the DM and the DC-DM under the AWGN attack,
the uniform noise attack and the WCAA.

4.1 Additive White Gaussian Noise Attack

When the DM and the DC-DM undergo the AWGN, no closed analytical solution
to the mutual information minimization problem exists; the minimization was
therefore performed using numerical computations. The results of this analysis
for the binary and quaternary cases are shown in Fig. 9.
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Fig. 9. Mutual information analysis results for the AWGN attack case and different α′

and WNR values: (a) binary signaling and (b) quaternary signaling
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Fig. 10. Mutual information analysis results for the uniform noise attack case: (a) with
binary signaling and (b) quaternary signaling

4.2 Uniform Noise Attack

It was shown [14] that the uniform noise attack is stronger than the AWGN
attack for some WNRs when the error probability is used as a cost function. One
of the properties of the KLD measure states that it is equal to zero if, and only if,
the two pdfs are equal. In case the uniform noise attack is applied, this condition
holds for some particular values of WNR for the mutual information given by

(16). It can be demonstrated that I(M ;V ′) = 0 when ξ = α′2

k2 , k ∈ N for the
|M|-ary signaling. The mutual information of quantization-based data-hiding
techniques for the uniform noise attacking case with binary and quaternary
signaling is depicted in Fig. 10.

The uniform noise attack guarantees that it is not possible to communicate
using the DC-DM at ξ ≤ α′2, and therefore distortion compensation parameter
α′ has a strong influence on the performance at the low-WNR. As a consequence,
ξ = α′2 represents the WNR corresponding to zero rate communication, if the
attacking variance satisfies σ2

Z ≥ Dw

α′2 .

For example (binary signaling, Fig. 10(a)), if the data-hider anticipates a
WNR = −6dB, he/she could select α′ = 0.7 to maximize the mutual information.
Nevertheless, at the WNR = −3dB the mutual information is zero for α′ = 0.7.
Therefore, it is possible for the attacker to inhibit reliable communications by
applying an attack 3dB lower in power than the data-hider prediction in this
example. This forces the data-hider to decrease the value of α′. Therefore, the
attacker can inhibit communications by making less efforts. In this example, to
reduce the power of the attack on 3dB from the embedder prediction is favorable
for the attacker.
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Fig. 11. Mutual information analysis results for the WCAA case: (a) binary signaling
and (b) quaternary signaling
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Fig. 12. Comparison of different attacks using mutual information as a cost function:
(a) α′ = 0.95, binary signaling and (c) α′ = 0.95, quaternary signaling

4.3 The Worst Case Additive Attack

The problem of the WCAA using the mutual information as a cost function can
be formulated using (15). Since the encoder must be fixed in advance as for the
probability of error analysis case, we solve the max-min problem as a constrained
minimization problem:

min
fZ(·)

Iα′,fZ(·)(M ;V ′) = min
fZ(·)

D
(

fV ′|M (v′|M = 1||fV ′(v′)
)

, (17)

where 0 < α′ ≤ 1. The constraints in (17) are the same as with the error proba-
bility oriented analysis case (10). Unfortunately, this problem has no closed form
solution and it was solved numerically. The obtained results are presented for
different α′ values in Fig. 11. In comparison with the AWGN and the uniform
noise attacks, they demonstrate that the developed attack produces the maxi-
mum possible loss in terms of the mutual information for all WNRs (Fig. 12).

In the analysis of the WCAA using the error probability as a cost function,
the optimal α′ parameter was found. Unfortunately, it is not the case in the
mutual information oriented analysis, and its value varies with the WNR. In
Fig. 13 the optimum α′ values as a function of the WNR are presented for
different input distributions in comparison with the optimum SCS parameter [6].
It demonstrates that SCS optimum distortion compensation parameter designed
for the AWGN is also a good approximation for the WCAA case.

Using the optimum α′ for each WNR, the resulting mutual information (17)
is presented in Fig. 14(a) for different cardinality of the input alphabet compared
to the performance of the AWGN using the optimized α = αopt parameter [12].
The obtained performance demonstrates that the developed WCAA is worse
than the AWGN whenever the optimum α′ is selected.
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Fig. 14. Maximum achievable rate for different cardinality of the input alphabet under
the WCAA compared to the AWGN (a) for |M| → ∞ and (b) for |M| < ∞

It is possible to observe in Fig. 14(a) that the impact of the WCAA is very
similar to the AWGN and that the difference in terms of the mutual information
is negligible. Although the AWGN is not the WCAA, its performance is an
accurate and practical approximation to the WCAA in the asymptotic case when
|M| → ∞. For |M| < ∞, the difference might be important for some WNRs
and it is needed to consider the real WCAA as it is presented in Fig. 14(b).

5 Conclusions

In this tutorial we analyzed the performance of quantization-based data-hiding
techniques from the probability of error and mutual information perspectives.
The comparison between the analyzed cost functions demonstrated that in a
rigid scenario with a fixed decoder, the attacker can decrease the rate of reliable
communication more severely than by using either the AWGN or the uniform
noise attacks. We showed that the AWGN attack is not the WCAA in gen-
eral, and we obtained an accurate and practical analytical approximation to the
WCAA, the so-called 3 − δ attack, when the cost function is the probability of

error for the fixed MD decoder. For the 3 − δ attack, α′ = 2(|M|−1)
2|M|−1 was found

to be the optimal value for the MD decoder that allows to communicate with an
upper bounded probability of error for a given WNR. This value could be fixed
without prior knowledge of the attacking pdf.

The analysis results obtained by means of numerical optimization showed
that there exists a worse attack than the AWGN when the mutual information
was used as a cost function. Contrarily to the error probability analysis case,
the optimal distortion compensation parameter (α′) depends on the operational
WNR for the mutual information analysis case. The particular behaviour of
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the mutual information under uniform noise attack was considered, achieving
zero-rate communication for attacking variances σ2

Z such that σ2
Z ≥ Dw

α′2 . The
presented results should serve as a basis for the development of fair benchmarks
for various data-hiding technologies under the assumptions of high rate and
σ2
X ≫ σ2

W .
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