
Marriages of Convenience:
Triples and Graphs, RDF and XML

in Web Querying

Tim Furche, François Bry, and Oliver Bolzer

Institute for Informatics,University of Munich,
Oettingenstraße 67, 80538 München, Germany

http://pms.ifi.lmu.de/

Abstract. Metadata processing is recognized as a central challenge for
database research in the next decade. Already, novel desktop data man-
agement and search applications (cf. Apple’s Spotlight and Microsoft’s
WinFS) are enabled by rich metadata. Efficient and effective access to
such data becomes a crucial issue for more and more application scenar-
ios. In this article, we focus on metadata represented in RDF. A number
of query languages for RDF have been presented in recent years. This
article argues that most of these approaches fail to address properly two
core issues: the provision of rich operators and constructs to adequately
support RDF’s graph data model and the ability to intertwine access to
metadata (in RDF format) and data (in XML format). To address this
points, two XML views over RDF data are expressed in the query lan-
guage Xcerpt and discussed. Furthermore, it is shown how these views
together with Xcerpt’s rich graph patterns allow the succinct expression
of complex, but common queries against RDF graphs.

1 Introduction

The ‘Semantic Web’ is an endeavor widely publicized in [1], envisioning the
current Web, which consists of (X)HTML and documents in other XML formats,
extended by metadata specifying the meaning of these documents in forms usable
by both human beings and computers.

The integral processing of data and metadata is recognized as a central chal-
lenge for the next decade (cf., e.g., Pat Selinger’s ICDE 2005 Keynote) not only
as a contribution to the Semantic Web vision, but also on a smaller scale as part
of the next generation of desktop data management (cf. Apple’s Spotlight and
Microsoft’s WinFS that aim at extending current file storage and desktop search
with extensive metadata facilities).

In the (Semantic) Web context, a number of formalisms have been proposed
for representing metadata, in particular RDF, Topic Maps, and OWL. This
article concentrates concentrate on RDF as the most widely used formalism.
This article illustrates first steps towards integrating access to standard Web
data in XML format and RDF metadata: First, as argued above, integrated

access to standard Web data in XML and metadata in RDF is essential. A
framework to access RDF data through XML views is proposed. Second, this
article argues that the currently predominant treatment of RDF data as flat
triples is, although easy to comprehend, not the only and often not the best way
of considering RDF data. Rather, a view of the RDF data directly as a graph
is not only natural and closer to the RDF data model, but also allows for easy
expression of graph patterns using much the same constructs as for navigating in
XML data. This is particularly evident in face of incomplete information about
the precise graph structure. Third, this article argues that querying RDF data
is often most conveniently achieved if queries are composed in terms of both
the triple and the graph view of RDF. Finally, this article argues that many
applications call for queries combining object data in (X)HTML or XML and
metadata in RDF. Thus, it is convenient to “marry” triple and graphs as well
as RDF and XML in querying the Semantic Web.

The proposed framework is realized by rules in the XML query language
Xcerpt that allow (a) the easy conversion between the two views on RDF and
(b) the ‘serialization transparent’ querying of RDF, i.e., the querying of RDF
in many of the over a dozen serialization formats for RDF proposed in recent
years.

2 Preliminaries

2.1 RDF and RDF Schema: Metadata Representation in the
Semantic Web

RDF [2] is the prevalent standard for representing metadata in the (Semantic)
Web. RDF data is sets of ‘triples’ or ‘statements’ of the form (Subject, Property,
Object). RDF’s data model (as defined in [3]) is a directed graph, whose nodes
correspond to statements’ subjects and objects and whose arcs correspond to
statements’ property (thus relating subjects with objects). Nodes are labeled by
either (1) URIs describing (Web) resources, or (2) literals (i.e. scalar data such
as strings or numbers), or (3) are unlabeled, being so-called anonymous or ‘blank
nodes’. Blank nodes are commonly used to group or ‘aggregate’ properties. Edges
are always labeled by URIs indicating the type of relation between its subject
and object.

RDFS allows one to define so-called ‘RDF Schemas’ or ‘ontologies’, similar
to object-oriented data models. Based on an RDFS, ‘inference rules’ can be
specified, for instance the transitivity of the class hierarchy, or the type of an
untyped resource that has a property associated with a known domain.

RDF can be serialized in various formats, the most frequent being XML.
Early approaches to RDF serialization have raised considerable criticism due to
their complexity. As a consequence, a surprisingly large number of RDF serial-
ization have been proposed, cf. [4] for a survey of serialization formats.

Figure 1 shows the running example for this article, a (simplified) represen-
tation of an RDF graph as used, e.g., in a book recommender system.

Writing

Novel Essay

Historical Novel Historical Essay

author

translator

foaf:Person

Bellum Civile

The First Man in Rome

Colleen McCullough

Julius Caesar

Aulus Hirtius

J. M. Carter

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

dc:title

dc:title

author

translator

author

author

foaf:name

foaf:name

foaf:name

foaf:name

Classes

Properties

Literals

Resources

rdf:type (“is-a”)
Relation

rdf:subClassOf
(“is-a-kind-of”)
Relation

Fig. 1. Sample Data: representation as a (simplified) RDF graph.

2.2 Xcerpt, a versatile Web Query Language

Xcerpt [5, 6] is a query language designed after principles given in [7] for querying
both data on the standard Web (e.g., XML and HTML data) and data on the
Semantic Web (e.g., RDF, Topic Maps, etc. data).

Xcerpt is ‘data versatile’, i.e. a same Xcerpt query can access and generate,
as answers, data in different Web formats. Xcerpt is ‘strongly answer-closed’, i.e.
it not only gives rise to construct answers in the same data formats as the data
queries, but also to include in a query program data generated by this same query
program. Xcerpt’s queries are pattern-based and give rise to incompletely specify
the data to retrieve by (1) not explicitly specifying all children of an element, (2)
specifying descendant elements at indefinite depths (restrictions in the form of
regular path expressions being possible), and (3) specifying optional query parts.
Xcerpt’s evaluation of incomplete queries is based on a novel form algorithm
called ‘simulation unification’. Xcerpt’s processing of XML documents is graph-
oriented, i.e., aware of the reference mechanisms (e.g., ID/IDREF attributes and
links) of XML. Xcerpt is rule-based: An Xcerpt rule expresses how data queried
can be re-assembled into new data items.

Xcerpt programs consist of at least one ‘goal’ and some (possibly zero) ‘rules’.
Rules and goals contain query and construction patterns, called ‘terms’. Terms
represent tree- or graph-like structures. The children of a node may either be
‘ordered’ (as in a XHTML document or in RDF sequence containers), i.e. the
order of occurrence is relevant, or ‘unordered’, i.e. the order of occurrence is
irrelevant and may be ignored (as in the case of RDF statements). In the term
syntax, an ordered term specification is denoted by square brackets [] , an un-
ordered term specification by curly braces { } . Terms may contain the reference

constructs ˆid (‘referring’ occurrence of the identifier id) and id @ t (‘defin-
ing’ occurrence of the identifier id). Using reference constructs, terms can form
cyclic (rooted) graph structures.

Terms can be either data, query, or construct terms. Data terms represent XML
documents and the data items of a semistructured database. They are similar to
ground functional programming expressions and logical atoms. A database is a
(multi-)set of data terms (e.g. the Web). A non-XML syntax has been chosen for
Xcerpt to improve readability, but there is a one-to-one correspondence between
an XML document and a data term.

Query terms are (possibly incomplete) patterns matched against Web re-
sources represented by data terms. In many ways, they are like forms or exam-
ples for the queried data (in the style of the ‘query-by-example’ paradigm [8]),
but also

– may be incomplete in breadth, i.e., contain ‘partial’ as well as ‘total’ term
specifications: A term t using a partial term specification for its subterms
matches with all such terms that (1) contain matching subterms for all sub-
terms of t and that (2) might contain further subterms without correspond-
ing subterms in t. Partial term specification is denoted by double (square or
curly) brackets. In contrast, a term t using a total term specification does not
match with terms that contain additional subterms without corresponding
subterms in t.

– may be augmented by variables for selecting data items, possibly with ‘vari-
able restrictions’ using the→ construct (read as), which restricts the admis-
sible bindings to those subterms that are matched by the restriction pattern.

– may contain query constructs like position matching (using position), sub-
term negation (using without), optional subterms (using optional), regular
expressions for namespaces, labels, and text, and conditional or uncondi-
tional path traversal (using desc).

– may contain further constraints on the variables in a so-called condition box,
beginning with the keyword where .

Construct terms serve to reassemble variables (the bindings of which are
specified in query terms) so as to construct new data terms. Again, they are
similar to the latter, but augmented by variables (acting as place holders for data
selected in a query) and the grouping construct all (which serves to collect all
instances that result from different variable bindings). Occurrences of all may
be accompanied by an optional sorting specification.

Rules or construct-query rules relate a construct term to a query consisting
of arbitrary boolean expressions using only AND, OR, and NOTto connect query
terms. They have the form

CONSTRUCTquery term FROM and { query term, or { query term, ... }, ... } END

An Xcerpt rule may contain one or several references to resources (expressed
using in and resource).

Rules can be seen as ‘views’ specifying how to obtain documents shaped in
the form of the construct term by evaluating the query against Web resources
(e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form
complex query programs, i.e., rules may query the results of other rules.

3 Two Perspectives on RDF

This section introduces two different perspectives on RDF: (1) a flat, almost re-
lational view and (2) a graph view reminiscent of semi-structured data. Existing
approaches for RDF querying are classified along these perspectives briefly.

To illustrate these two perspectives, the selection query “Select all Essays
together with their authors (i.e. author URIs and corresponding names)” is
used against the data of Figure 1. This simple, but natural query requires a
(unconditional) traversal of the sub-classes of Essay, to find also books classified
as, e.g., Historical Essay.

3.1 RDF Triples: A Flat, Relational View

The following Xcerpt program expresses the above query on a triple view of the
RDF data:

1 DECLAREns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
DECLAREns-prefix books = ”http :// example . org/books#”

3 GOAL
result [

5 all essay [
id [var Essay],

7 all author [
id [var Author],

9 all name [var AuthorName]
]]]

11 FROM
and { RDFS-TRIPLE [

13 var Essay, rdf:type{{}}, books:Essay{{}}],
RDF-TRIPLE [

15 var Essay, books:author{{}}, var Author],
RDF-TRIPLE [

17 var Author, books:authorName{{}}, var AuthorName] }
END

The query pattern (between FROMand END) is a conjunction of queries against
the RDF triples represented in the predicate RDF-TRIPLE using the prefixes
declared in line 1 and 2. Notice that the first conjunct actually uses RDFS-
TRIPLE. This view of the RDF data contains all basic triples plus the ones
entailed by the RDFS semantics (cf. [9] for a detailed description). Using RDFS-
TRIPLE instead of RDF-TRIPLE ensures that also resources actually classified in
a sub-class of books:Essay are returned.

In the construct pattern (between GOALand FROM), one of the strengths of
combining XML and RDF querying in Xcerpt is shown: Following the W3C’s

SQL

OQL

Relational and Nested
Relational

XML

QUEL

1970 1990 2000

Object-oriented

Generalized Path
Expressions

XPath 1.0

XSLT 1.0

XQuery 1.0

2002

Xcerpt RDF

RDF

strong influence

extension
embeds

2005

SquisQL

RDQL
SPARQL

TriQL

RQL

SeRQL

eRQL

Syntactic Web

RDF Twig

Versa

RDF Path, RPath, RxPath

RDFT

XsRQL

MetaLog

AlgaeN3

N3QL

F-Logic

TRIPLE

iTQL

WQL

R-DEVICE RDFQL

RDF-QBE

triple-based QL

graph-based QL

nested triples or
(non-recursive) paths

Fig. 2. RDF Query Languages: historical overview and classification.

requirements for an RDF data access language, yet in contrast to most other
RDF query languages, it is possible to construct arbitrary XML: E.g., here, a
list of all essays with their authors grouped inside is constructed. Indeed, when
constructing structured data such as RDF and XML, grouping is among the
most essential constructs, cf. [10, 11] on grouping in an XML context. For RDF
querying, this points towards the need for similarly powerful, declarative, and
explicit grouping constructs, as provide in Xcerpt’s all .

Except for the construction of arbitrary XML, a similar (triple) view of RDF
is taken in most of the current RDF query languages (cf. Figure 2), most no-
tably in RDQL and the W3C’s SPARQL [12], and also in [13], an approach for
querying RDF with XQuery: A query is composed of conjunctions (and in some
languages including our proposal disjunctions) of “triple patterns”, i.e., triples
with variables indicating queried data. Using multiple occurrences of same vari-
ables more complex conditions can be expressed, e.g., for traversing paths in the
RDF data or even for restricting a resource using several of its properties.

While familiar from SQL, this style leads for RDF data to hard-to-read and
lengthy queries that also pose problems for evaluation (cf., e.g., [14]). Further-
more, queries involving (conditional or unconditional) traversals of unknown
length in the RDF graph can often not be expressed in query languages using
this style and, if it is provided, requires recursive views, rules, or functions (e.g.,
in [13]). This applies to the traversal of the subclasses of Essay needed in the
sample query. This is a serious limitation of triple-based RDF query languages, as

such queries are frequent (especially when considering ontological data in RDFS
or other ontology languages) and recursive views or similar mechanisms make
optimization and efficient evaluation of such queries hard or even impossible.

The previous observations lead us to an alternative view of RDF that is both
closer to its actual data model and can make better use of the advanced features
of an XML query language such as the traversal of arbitrary length paths in tree
or graph data.

3.2 RDF Graphs: A Semi-structured View

For this view of RDF, Xcerpt’s treatment of XML as graph data is an advantage
over XML query languages such as XPath or XQuery, which consider XML
as strictly tree shaped, providing no direct support for (ID/IDREF or similar)
references in the data model. Although there have been proposals for slicing an
(acyclic) RDF graph into trees (cf. Figure 2) for processing them with XSLT
or XQuery (e.g., [15]), these approaches invariantly suffer (a) from choosing an
appropriate slicing and (b) from the (in general) exponential blow-up of the tree
view of an acyclic RDF graph.

In Xcerpt, a graph view of RDF is rather natural as the following Xcerpt
program expressing the same query as above, but on the graph instead of the
triple view, demonstrates:

DECLAREns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
2 DECLAREns-prefix books = ”http :// example . org/books#”

GOAL
4 result [

all essay [
6 id [var Essay],

all author [
8 id [var Author],

all name [var AuthorName]
10]]]

FROM
12 RDFS-GRAPH {{

var Essay {{
14 rdf:type {{ books:Essay {{ }} }},

books:author {{
16 var Author {{ books:name {{ var AuthorName }} }}

}}
18 }} }}

END

The RDF graph view is represented in the RDF-GRAPH predicate. Here,
the RDFS-GRAPH view is used that extends RDF-GRAPH as RDFS-TRIPLE ex-
tends RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each
resource is a direct child element in RDF-GRAPH with a sub-element for each
statement with that resource as object. The sub-element is labeled with the
URI of the predicate and contains the object of the statement. As Xcerpt’s data
model is a rooted graph this can be represented without duplication of resources.

In contrast to the previous query against the RDF triple view, no conjunction
is used but rather a nested pattern that naturally reflects the structure of the
RDF graph. The more complex a query, the more evident the advantage of the

graph view becomes: instead of having to use multiple occurrences of same vari-
ables for relating parts of the query, that relation is represented in the structure
of the query itself (represented in the textual version of the query shown above
by nesting and indentation).

Path traversals of arbitrary length can be expressed using traversal operators
such as descendant. E.g., to find all subclasses of a given class one can use
Xcerpt’s qualified descendant desc (rdfs:subClassOf<rdfs:Class)* that is similar to
regular path expressions or conditional XPath. Similarly, other constructs for
querying XML data with incomplete information about the structure of the
queried data can be used for RDF as well.

The following Xcerpt rule illustrate the use of a conditional descendant. It
computes all persons that have a common ancestor and includes any such com-
mon ancestor, if it is the ‘nearest’ common ancestor, i.e., there is no other com-
mon ancestor on the path to the two persons. Since all persons have at least
foaf:Person as common ancestor, the query also excludes all resources reached
by rdf:type relations.

DECLAREns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
2 DECLAREns-prefix books = ”http :// example . org/books#”

GOAL
4 result [

all related-persons [
6 var Person1,

var Person2,
8 all via { var Resource }

]
10 }

FROM
12 RDFS-GRAPH {{

var Resource @ /.*/ {{
14 desc (!/rdf:type/)* var Person1 {{ rdf:type { foaf:Person {{}} } }},

desc (!/rdf:type/)* var Person2 {{ rdf:type { foaf:Person {{}} } }},
16 without desc /.*/ {{

desc (!/rdf:type/)* var Person1 {{ }},
18 desc (!/rdf:type/)* var Person2 {{ }},

}}
20 }}

}}
22 END

Such explicit query constructs make optimization and evaluation of a fre-
quent class of queries easier than relying on recursive views or similar generic
mechanisms as required on the triple view. Considering the efficient evaluation of
queries against such a graph view of RDF data, there are results on the efficient
evaluation of queries against graph-shaped semi-structured data, cf. [16]. Ongo-
ing work by the authors targets efficient evaluation methods for implementing
Xcerpt queries against graph-shaped data. We believe it likely that at least for
some interesting subsets of Xcerpt queries efficient evaluation methods against
graph-shaped data can be found.

Nevertheless, only a surprisingly small number of RDF query languages con-
sider a graph-view of RDF and provide expressive traversal operators, aside of
Xcerpt most notably Versa [17, 18]. In contrast to the proposal presented in this
paper, Versa uses an unfamiliar syntax instead of established traversal operators
from XML and generalized path expressions.

Graph Merging. In contrast to conventional data such as XML or relational
data, RDF data from different and heterogeneous sources can be easily merged,
as nodes in an RDF graph can be and mostly (with the exception of blank
and literal nodes) are identified by URIs, i.e., globally valid identifiers. On the
first glance, it might seem that merging two RDF graphs is more difficult if
considering the graph view of RDF. However, this crucial use case can be solved
in Xcerpt easily on either view.

On parsing RDF data, Xcerpt annotates the RDF data with provenance
information similar to recent proposals on named graphs [19] and their use in
RDF query languages [20]: In the case of the triple view, a origin attribute is
added to each RDF-TRIPLE term indicating the URI of the data’s origin resource.
In the case of the graph view, the same procedure could be taken. Alternatively,
a single origin attribute for an entire RDF graph can be used by adding it to
the RDF-GRAPH term. While this sacrifices some flexibility, it saves considerable
space.

The following Xcerpt program shows the construction of the merged triples
from the base triples. Notice, how the outer all groups only over the variables
Subject , Property , and Object (as they occur free in that all , i.e., nested
inside that all without another all in between). Therefore, a RDF-TRIPLE is
created for each combination of subject, property, and object occurring in the
base triples (from either graph) with a origin attribute that is a concatenation of
the values of all origin attributes of base triples. If a statement occurred in both
graphs the origin attribute will thus point to two resources.

CONSTRUCT
2 merged-triples {{

all RDF-TRIPLE [
4 attributes {{ origin { all var Origin }, all var OtherAttributes }},

var Subject, var Property, var Object
6]

}}
8 FROM

RDF-TRIPLE [
10 attributes {{ origin {{ var Origin }}, var OtherAttributes }}

var Subject, var Property, var Object
12]

END

If only named graph provenance (i.e., provenance for entire RDF graphs) is
needed, the following rule illustrate the merging of two RDF graphs using the
graph view:

1 CONSTRUCT
RDF-GRAPH {

3 all var Resources {{
all var Statements {{ }}

5 }}
}

7 FROM
and {

9 RDF-GRAPH {{
var Resource {{

11 optional var Statements → /.*/ {{ }}
}}

13 }}
}

15 END

Notice, how the query can simply ignore where the resources come from. Dupli-
cate resources and statements are eliminated implicitly during the grouping.

3.3 Marrying Triples and Graphs

A final observation on the two views on RDF is that they are not mutually
exclusive. In fact, conversion between the two views can be performed by the
following, linear Xcerpt view:

1 CONSTRUCT
RDF-GRAPH {

3 all var Subject @ var Subject {
all optional var Predicate { ˆ var Object },

5 all optional var Predicate { var Literal }
} }

7 FROM
or {

9 RDF-TRIPLE[
var Subject, var Predicate{},

11 optional var Literal as literal{{}},
optional var Object {{}} where { var Object != ’literal’}

13],
RDF-TRIPLE[

15 /.*/:/.*/{{}}, /.*/:/.*/{{}}, var Subject{{}}
] }

17 END

Notice the use of the optional keyword in lines 11 and 12. This indicates
that the contained part of the pattern does not have to occur in the data, but
if it does occur the contained variables are bound appropriately. In lines 3 and
4 the actual graph structure is constructed: by using the operators @and ˆ a
(possibly cyclic) link can be constructed.

Indeed, the framework for RDF access in Xcerpt discussed in this article
provides both views, thus allowing the query author to decide which view is
more appropriate for his liking and requirements.

4 Marrying XML and RDF

Providing integrated access to RDF and XML is a crucial issue for the success of
the Semantic Web. This is reflected by a number of proposals for such integrated
access: As discussed above, [13] and [15] share with the work presented in this
article the aim to extend XML query languages with access to RDF data, but
are limited to a triple or tree view of RDF. In [21] the dual approach has been
taken: mapping XML data into RDF. However, [21] only preserves a subset
of the information represented in the XML data and requires schema-specific
mapping rules to be defined prior to accessing the information. Reconciling the
RDF and XML data models has been considered in [22] and [23]. Whereas the
first essentially defines a new data model, the latter proposes a new node type
for XML as means for handling RDF edges.

In the remainder of this section, the mapping from RDF into XML discussed
in this article is further detailed.

Element Identifier
http://example.com/books/author

authorNovel rdfs:domain

books:Novel books:author

rdf:type

Element Label:
http://example.com/books/author@

The First Man
in Rome

books:title

Element Identifier
random, unique; assigned at construction

Element Label:
blank@

Element Label:
literal

"The First Man in Rome"

Element Label:
http://example.com/books/title

Element Label:
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

^ Element Identifier
http://example.com/books/Novel

Element Label:
http://www.w3.org/2000/01/rdf-schema#domain

^ Element Identifier
http://example.com/books/Novel

Element Identifier
http://example.com/books/Novel

Element Label:
http://example.com/books/Novel@

Fig. 3. Excerpt of RDF Graph represented in XML

4.1 A Marriage Contract: Issues when Mapping RDF into XML

The mapping proposed here, although it has some similarities with [23], differs
from all of the above noticeably: Figure 3 illustrates the mapping from an ex-
cerpt of the sample RDF graph into three (top-level) XML elements (i.e., direct
children of RDF-GRAPH). The following Xcerpt data term is a textual represen-
tation of the data in Figure 3:

1 DECLAREns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
DECLAREns-prefix rdfs = ”http ://www.w3 . org /2000/01/rdf−schema#”

3 DECLAREns-prefix books = ”http :// example . org/books#”
RDF-GRAPH {

5 id1 @ blank {
books:title { literal { ”The F i r s t Man in Rome” } },

7 rdf:type { ˆbooks:Novel }
},

9 books:author @ books:author {
rdfs:domain { ˆbooks:Novel }

11 },
books:Novel @ books:Novel {},

13 ...
}

Notice how both edges and nodes from the RDF graph are represented as
XML elements. However, nodes can still be distinguished as they are either blank
nodes (without namespace) literal nodes (again without namespace) or named

resources in which case both their element identifier and element label are set
to the URI identifying the resource. In contrast, elements for edges never have
an identifier (as they can not be referenced by another part of the data). This
mapping results in a ‘stripped’ representation of the RDF graph: the children
of elements representing nodes (i.e., resources) are always elements representing
edges and vice versa. One might question the use of resource URIs both as labels
and identifiers of nodes. However, while element labels are more convenient for
querying, unique identifiers for the elements are needed (for establishing graph
references). Since URIs already provide uniqueness, they are also used for this
purpose. [23] suggest the use of RDF types (i.e., the URI of the resource associ-
ated with rdf:type) as element labels when mapping RDF to XML. However, this
approach is not able to map all RDF graphs as RDF resources may be classified
by distinct types (that may not be related at all in the type hierarchy).

The XML mapping allows additional information about the RDF statements,
e.g., provenance information, to be recorded alongside.

4.2 Serialization Transparency

Aside of providing the above discussed two views on RDF, Xcerpt’s rules are also
convenient for making the language ‘serialization transparent’. For each RDF
serialization, a set of rules expresses a translation from or into that serialization.
Exemplary rules for RDF/XML and RXR can be found in [9], similar functions
for parsing RDF/XML in XQuery are described in [13].

5 Conclusion and Outlook

In this article, a brief overview of a framework for RDF querying in the XML
query language Xcerpt is presented highlighting in particular the need for re-
consideration of the triple view as the only perspective on RDF available in the
established RDF query languages. We believe that a richer view of RDF more
akin to XML data with graph-shape not only makes the integration of data and
metadata easier but also leads in many cases to more succinct queries without
sacrificing efficiency.

Acknowledgments. This research has been funded by the European Commission
and by the Swiss Federal Office for Education and Science within the 6th Frame-
work Programme project REWERSE number 506779 (cf. http://rewerse.
net).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web—A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American (2001)

2. Manola, F., Miller, E., McBride, B.: RDF primer. Recommendation, W3C (2004)

3. Klyne, G., Carroll, J., McBride, B.: Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C. (2004)

4. Bry, F., Furche, T., Badea, L., Koch, C., Schaffert, S., Berger, S.: Identification
of Design Principles for a (Semantic) Web Query Language. Deliverable I4-D1,
REWERSE (2004)

5. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In: Proc. Extreme Markup Languages. (2004)

6. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the
Web. Dissertation/Ph.D. thesis, University of Munich (2004)

7. Bry, F., Furche, T., Badea, L., Koch, C., Schaffert, S., Berger, S.: Querying the
Web Reconsidered: Design Principles for Versatile Web Query Languages. Journal
of Semantic Web and Information Systems 1 (2005)

8. Zloof, M.M.: Query-by-Example: A Data Base Language. IBM Systems Journal
16 (1977)

9. Bolzer, O.: Towards Data-Integration on the Semantic Web: Querying RDF with
Xcerpt. Diplomarbeit/Master thesis, University of Munich (2005)

10. Paparizos, S., Al-Khalifa, S., Jagadish, H.V., Lakshmanan, L.V., Nierman, A.,
Srivastava, D., Wu, Y.: Grouping in XML. In: EDBT Workshop on XML Data
Management. Number 2490 in LNCS, Springer-Verlag (2002)

11. Beyer, K.S., Cochrane, R., Colby, L.S., Ozcan, F., Pirahesh, H.: XQuery for Analyt-
ics: Challenges and Requirements. In: Int. Workshop on XQuery Implementation,
Experience and Perspectives <XIME-P/>. (2004)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Working
Draft, W3C (2005)

13. Robie, J.: The Syntactic Web: Syntax and Semantics on the Web. In: XML. (2001)
14. Hung, E., Deng, Y., Subrahmanian, V.S.: RDF Aggregate Queries and Views. In:

Int. Conf. on Data Engineering. (2005)
15. Walsh, N.: RDF Twig: accessing RDF graphs in XSLT. In: Extreme Markup

Languages. (2003)
16. Schenkel, R., Theobald, A., Weikum, G.: HOPI: A Efficient Connection Index for

Complex XML Document Collections. In: Extending Database Technology. (2004)
17. Olson, M., Ogbuji, U.: Versa Specification. Online only (2003)
18. Ogbuji, U.: Versa by example. Online only (2004)
19. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and Trust.

Technical Report HPL-2004-57, HP Labs (2004)
20. Bizer, C.: TriQL—A Query Language for Named Graphs. Online only (2004)
21. Koffina, I., Serfiotis, G., Christophides, V., Tannen, V., Deutsch, A.: Integrating

XML data sources using RDF/S schemas: The ICS-FORTH Semantic Web Inte-
gration Middleware (SWIM). In: Dagstuhl Seminar on Semantic Interoperability
and Integration. Number 04391 in Dagstuhl Seminar Proceedings, IBFI (2005)

22. Patel-Schneider, P., Simeon, J.: The Yin/Yang Web: XML Syntax and RDF Se-
mantics. In: Int. World Wide Web Conference. (2002)

23. Boley, H.: The Rule Markup Language: RDF-XML Data Model, XML Schema
Hierarchy, and XSL Transformations. In: Int. Conf. on Applications of Prolog.
(2001)

