Skip to main content

Exploring Hierarchical Rule Systems in Parallel Coordinates

  • Conference paper
Advances in Intelligent Data Analysis VI (IDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3646))

Included in the following conference series:

  • 2047 Accesses

Abstract

Rule systems have failed to attract much interest in large data analysis problems because they tend to be too simplistic to be useful or consist of too many rules for human interpretation. We recently presented a method that constructs a hierarchical rule system, with only a small number of rules at each level of the hierarchy. Lower levels in this hierarchy focus on outliers or areas of the feature space where only weak evidence for a rule was found in the data. Rules further up, at higher levels of the hierarchy, describe increasingly general and strongly supported aspects of the data. In this paper we show how a connected set of parallel coordinate displays can be used to visually explore this hierarchy of rule systems and allows an intuitive mechanism to zoom in and out of the underlying model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salzberg, S.: A nearest hyperrectangle learning method. Machine Learning 6, 251–276 (1991)

    Google Scholar 

  2. Wettschereck, D.: A hybrid nearest-neighbour and nearest-hyperrectangle learning algorithm. In: Proceedings of the European Conference on Machine Learning, pp. 323–335 (1994)

    Google Scholar 

  3. Abe, S., Lan, M.S.: A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Transactions on Fuzzy Systems 3, 18–28 (1995)

    Article  Google Scholar 

  4. Higgins, C.M., Goodman, R.M.: Learning fuzzy rule-based neural networks for control. In: Advances in Neural Information Processing Systems, California, vol. 5, pp. 350–357. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  5. Simpson, P.K.: Fuzzy min-max neural networks – part 1: Classification. IEEE Transactions on Neural Networks 3, 776–786 (1992)

    Article  Google Scholar 

  6. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22, 1313–1427 (1992)

    MathSciNet  Google Scholar 

  7. Berthold, M.R.: Mixed fuzzy rule formation. International Journal of Approximate Reasoning (IJAR) 32, 67–84 (2003)

    Article  MATH  Google Scholar 

  8. Gabriel, T.R., Berthold, M.R.: Constructing hierarchical rule systems. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 76–87. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Gabriel, T.R., Berthold, M.R.: Influence of fuzzy norms and other heuristics on “mixed fuzzy rule formation”. International Journal of Approximate Reasoning (IJAR) 35, 195–202 (2004)

    Article  MATH  Google Scholar 

  10. Berthold, M.R., Hall, L.O.: Visualizing fuzzy points in parallel coordinates. IEEE Transactions on Fuzzy Systems 11, 369–374 (2003)

    Article  Google Scholar 

  11. Fua, Y.H., Ward, M., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: IEEE Conference on Visualization, pp. 43–50 (1999)

    Google Scholar 

  12. Inselberg, A., Dimsdale, B.: Multidimensional lines I: representation. SIAM J. Applied Math. 54, 559–577 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Inselberg, A., Dimsdale, B.: Multidimensional lines II: proximity and applications. SIAM J. Applied Math. 54, 578–596 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Inselberg, A.: Multidimensional detective. In: IEEE Symposium on Information Visualization, InfoVis, pp. 100–107. IEEE Press, Los Alamitos (1997)

    Google Scholar 

  15. Chou, S.Y., Lin, S.W., Yeh, C.S.: Cluster identification with parallel coordinates. Pattern Recognition Letters 20, 565–572 (1999)

    Article  Google Scholar 

  16. Berthold, M., Hand, D.J. (eds.): Intelligent Data Analysis: An Introduction, 2nd edn. Springer, Heidelberg (2003)

    Google Scholar 

  17. Fisher, R.A.: The use of multiple measurements in taxonomic problems. In: Annual Eugenics, II, vol. 7, pp. 179–188. John Wiley, Chichester (1950)

    Google Scholar 

  18. Zhang, M., Hall, L., Goldgof, D.: Knowledge-based classification of czcs images and monitoring of red tides off the west florida shelf. In: The 13th International Conference on Pattern Recognition, vol. B, pp. 452–456 (1996)

    Google Scholar 

  19. Zhang, M., Hall, L.O., Goldgof, D.B., Muller-Karger, F.E.: Fuzzy analysis of satellite images to find phytoplankton blooms. In: IEEE International Conference on Systems Man and Cybernetics (1997)

    Google Scholar 

  20. Gordon, H.R., Clark, D.K., Mueller, J.L., Hovis, W.A.: Phytoplankton pigments derived from the nimbus-7 czcs: comparisons with surface measurements. Science 210, 63–66 (1980)

    Article  Google Scholar 

  21. Cheng, T.W., Goldgof, D.B., Hall, L.: Fast fuzzy clustering. Fuzzy Sets and Systems 93, 49–56 (1998)

    Article  MATH  Google Scholar 

  22. Zhang, M., Hall, L., Goldgof, D.: Knowledge guided classification of coastal zone color images off the west florida shelf. Technical Report ISL-99-11, University of South Florida, Dept. of CSE, USF, Tampa, FL(1999); Under review in International Journal of Pattern Recognition and AI.

    Google Scholar 

  23. Weislow, O., Kiser, R., Fine, D., Bader, J., Shoemaker, R., Boyd, M.: New soluble formazan assay for HIV-1 cytopathic effects: application to high flux screening of synthetic and natural products for AIDS antiviral activity. Journal National Cancer Institute 81, 577–586 (1989)

    Article  Google Scholar 

  24. Cruciani, G., Crivori, P., Carrupt, P.A., Testa, B.: Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. Journal of Molecular Structure 503, 17–30 (2000)

    Article  Google Scholar 

  25. Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood Limited (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabriel, T.R., Pintilie, A.S., Berthold, M.R. (2005). Exploring Hierarchical Rule Systems in Parallel Coordinates. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_10

Download citation

  • DOI: https://doi.org/10.1007/11552253_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28795-7

  • Online ISBN: 978-3-540-31926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics