Abstract
In this paper, a method to analyze GSM network performance on the basis of massive data records and application domain knowledge is presented. The available measurements are divided into variable sets describing the performance of the different subsystems of the GSM network. Simple mathematical models for the subsystems are proposed. The model parameters are estimated from the available data record using quadratic programming. The parameter estimates are used to find the input-output variable pairs involved in the most severe performance degradations. Finally, the resulting variable pairs are visualized as a tree-shaped cause-effect chain in order to allow user friendly analysis of the network performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mokhtar Bazaraa, S., Hanif Sherali, D., Shetty, C.M.: Nonlinear Programming: theory and algorithms. John Wiley and Sons, Chichester (1993)
Kyriazakos, S.A., Karetsos, G.T.: Practical Radio Resource Management in Wireless Systems. Artech House, Inc (2004)
Laiho, J., Raivio, K., Lehtimäki, P., Hätönen, K., Simula, O.: Advanced analysis methods for 3G cellular networks. IEEE Transactions on Wireless Communications 4(3), 930–942 (2005)
Lehtimäki, P., Raivio, K.: A SOM based approach for visualization of GSM network performance data. In: Proceedings of the 18th Internation Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE (2005) (to appear)
Lehtimäki, P., Raivio, K., Simula, O.: Mobile radio access network monitoring using the self-organizing map. In: Proceedings of the 10th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 2002, pp. 231–236 (2002)
Lehtimäki, P., Raivio, K., Simula, O.: Self-organizing operator maps in complex system analysis. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 622–629. Springer, Heidelberg (2003)
Zander, J.: Radio Resource Management for Wireless Networks. Artech House, Inc (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lehtimäki, P., Raivio, K. (2005). A Knowledge-Based Model for Analyzing GSM Network Performance. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_19
Download citation
DOI: https://doi.org/10.1007/11552253_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28795-7
Online ISBN: 978-3-540-31926-9
eBook Packages: Computer ScienceComputer Science (R0)