Skip to main content

Condensed Nearest Neighbor Data Domain Description

  • Conference paper
Advances in Intelligent Data Analysis VI (IDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3646))

Included in the following conference series:

  • 2063 Accesses

Abstract

A popular method to discriminate between normal and abnormal data is based on accepting test objects whose nearest neighbors distances in a reference data set lie within a certain threshold. In this work we investigate the possibility of using as reference set a subset of the original data set. We discuss relationship between reference set size and generalization, and show that finding the minimum cardinality reference consistent subset is intractable. Then, we describe an algorithm that computes a reference consistent subset with only two reference set passes. Experimental results confirm the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angiulli, F., Pizzuti, C.: Fast outlier detection in high-dimensional spaces. In: Proc. of the European Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 15–26 (2002)

    Google Scholar 

  2. Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: Lof: identifying density-based local outliers. In: Proc. of the ACM Int. Conf. on Management of Data (2000)

    Google Scholar 

  3. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. on Information Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  4. Devroye, L.: On the inequality of cover and hart. IEEE Trans. on Pattern Analysis and Machine Intelligence 3, 75–78 (1981)

    Article  MATH  Google Scholar 

  5. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)

    MATH  Google Scholar 

  6. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data. In: Applications of Data Mining in Computer Security (2002)

    Google Scholar 

  7. Fix, E., Hodges, J.: Discriminatory analysis. non parametric discrimination: Consistency properties. In: Tech. Report 4, USAF School of Aviation Medicine, Randolph Field, Texas (1951)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computer and Intractability. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  9. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. on Information Theory 14, 515–516 (1968)

    Article  Google Scholar 

  10. Karaçali, B., Krim, H.: Fast minimization of structural risk by nearest neighbor rule. IEEE Trans. on Neural Networks 14(1), 127–137 (2003)

    Article  Google Scholar 

  11. Knorr, E., Ng, R.: Algorithms for mining distance-based outliers in large datasets. In: Proc. of the Int. conf. on Very Large Databases, pp. 392–403 (1998)

    Google Scholar 

  12. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: Proc. ACM Int. Conf. on Managment of Data, pp. 427–438 (2000)

    Google Scholar 

  13. Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Proc. of the Int. Conf. on Knowledge Discovery & Data Mining, Menlo Park, CA, pp. 251–256 (1995)

    Google Scholar 

  14. Stone, C.: Consistent nonparametric regression. Annals of Statistics 8, 1348–1360 (1977)

    Article  Google Scholar 

  15. Tax, D., Duin, R.: Data domain description using support vectors. In: Proc. of the European Symp. on Artificial Neural Networks, Bruges, Belgium, April 1999, pp. 251–256 (1999)

    Google Scholar 

  16. Tax, D., Duin, R.: Data descriptions in subspaces. In: Proc. of Int. Conf. on Pattern Recognition, pp. 672–675 (2000)

    Google Scholar 

  17. Toussaint, G.: Proximity graphs for nearest neighbor decision rules: Recent progress. In: Tech. Report SOCS-02.5, School of Computer Science, McGill University, Montréal, Québec, Canada (2002)

    Google Scholar 

  18. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vapnik, V.N.: Statistical learning theory. In: Haykin, S. (ed.). Wiley, Chichester (1998)

    Google Scholar 

  20. Ypma, A., Duin, R.: Support objects for domain approximation. In: Proc. of the ICANN (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angiulli, F. (2005). Condensed Nearest Neighbor Data Domain Description. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_2

Download citation

  • DOI: https://doi.org/10.1007/11552253_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28795-7

  • Online ISBN: 978-3-540-31926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics